1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
use std::fmt::format;
use bitfield_struct::bitfield;
use crate::Conversion;
/// Bitfield representing an 8-byte data field.
///
/// ### Repr `u64`
///
/// | Field | Size (bits) |
/// |------------------|-------------|
/// | byte 0 | 8 |
/// | byte 1 | 8 |
/// | byte 2 | 8 |
/// | byte 3 | 8 |
/// | byte 4 | 8 |
/// | byte 5 | 8 |
/// | byte 6 | 8 |
/// | byte 7 | 8 |
#[bitfield(u64, order = Msb)]
#[derive(PartialEq, Eq, PartialOrd, Ord)]
pub struct DataField {
#[bits(8)]
byte_0_bits: u8,
#[bits(8)]
byte_1_bits: u8,
#[bits(8)]
byte_2_bits: u8,
#[bits(8)]
byte_3_bits: u8,
#[bits(8)]
byte_4_bits: u8,
#[bits(8)]
byte_5_bits: u8,
#[bits(8)]
byte_6_bits: u8,
#[bits(8)]
byte_7_bits: u8,
}
impl Conversion for DataField {
type Type = u64;
/// Creates a new [`DataField`] bitfield from a 64-bit integer.
#[inline]
fn from_bits(bits: u64) -> Self {
Self(bits)
}
/// Creates a new [`DataField`] bitfield from a base-16 (hex) string slice.
#[inline]
fn from_hex(hex_str: &str) -> Self {
let bits = u64::from_str_radix(hex_str, 16).unwrap_or_default();
Self(bits)
}
/// Creates a new [`DataField`] bitfield from a 64-bit integer.
#[inline]
fn try_from_bits(bits: u64) -> Option<Self> {
Some(Self(bits))
}
/// Creates a new [`DataField`] bitfield from a base-16 (hex) string slice.
#[inline]
fn try_from_hex(hex_str: &str) -> Option<Self> {
match u64::from_str_radix(hex_str, 16) {
Ok(v) => Some(Self(v)),
Err(_) => None,
}
}
/// Creates a new 64-bit integer from the [`DataField`] bitfield.
#[inline]
fn into_bits(self) -> u64 {
self.into_bits()
}
/// Creates a new base-16 (hex) [`String`] from the [`DataField`] bitfield.
#[inline]
fn into_hex(self) -> String {
format(format_args!("{:016X}", self.into_bits()))
}
}
macro_rules! field_x {
($($num:tt),*) => {
paste::paste! {
$(
#[inline]
pub const fn [<byte_ $num>](&self) -> u8 {
self.[<byte_ $num _bits>]()
}
)*
}
};
}
impl DataField {
field_x!(0, 1, 2, 3, 4, 5, 6, 7);
/// Return the 64-bit [`DataField`] bitfield as little-endian bytes.
#[must_use]
pub const fn to_le_bytes(&self) -> [u8; 8] {
self.into_bits().to_le_bytes()
}
/// Return the 64-bit [`DataField`] bitfield as big-endian bytes.
#[must_use]
pub const fn to_be_bytes(&self) -> [u8; 8] {
self.into_bits().to_be_bytes()
}
/// Return the 64-bit [`DataField`] bitfield as native-endian bytes.
#[must_use]
pub const fn to_ne_bytes(&self) -> [u8; 8] {
self.into_bits().to_ne_bytes()
}
/// Convert the [`DataField`] bitfield to little-endian byte format.
#[must_use]
pub const fn to_le(&self) -> Self {
Self(self.into_bits().to_le())
}
/// Convert the [`DataField`] bitfield to big-endian byte format.
#[must_use]
pub const fn to_be(&self) -> Self {
Self(self.into_bits().to_be())
}
}
/// Represents a Name in the SAE J1939 protocol.
///
/// The Name structure is used in the SAE J1939 protocol to represent the identity of a device or
/// component within a vehicle's network.
///
/// ### Repr: `u64`
/// | Field | Size (bits) |
/// |-----------------------------------|-------------|
/// | Arbitrary address bits | 1 |
/// | Industry group bits | 3 |
/// | Vehicle system instance bits | 4 |
/// | Vehicle system bits | 7 |
/// | Reserved bits | 1 |
/// | Function bits | 8 |
/// | Function instance bits | 5 |
/// | ECU instance bits | 3 |
/// | Manufacturer code bits | 11 |
/// | Identity number bits | 21 |
#[bitfield(u64, order = Msb)]
#[derive(PartialEq, Eq, PartialOrd, Ord)]
pub struct NameField {
#[bits(1)]
arbitrary_address_bits: bool,
#[bits(3)]
industry_group_bits: u8,
#[bits(4)]
vehicle_system_instance_bits: u8,
#[bits(7)]
vehicle_system_bits: u8,
#[bits(1)]
reserved_bits: bool,
#[bits(8)]
function_bits: u8,
#[bits(5)]
function_instance_bits: u8,
#[bits(3)]
ecu_instance_bits: u8,
#[bits(11)]
manufacturer_code_bits: u16,
#[bits(21)]
identity_number_bits: u32,
}
impl Conversion for NameField {
type Type = u64;
/// Creates a new [`NameField`] bitfield from a 64-bit integer.
#[inline]
fn from_bits(bits: u64) -> Self {
Self(bits)
}
/// Creates a new [`NameField`] bitfield from a base-16 (hex) string slice.
#[inline]
fn from_hex(hex_str: &str) -> Self {
let bits = u64::from_str_radix(hex_str, 16).unwrap_or_default();
Self(bits)
}
/// Creates a new [`NameField`] bitfield from a 64-bit integer.
#[inline]
fn try_from_bits(bits: u64) -> Option<Self> {
Some(Self(bits))
}
/// Creates a new [`NameField`] bitfield from a base-16 (hex) string slice.
#[inline]
fn try_from_hex(hex_str: &str) -> Option<Self> {
match u64::from_str_radix(hex_str, 16) {
Ok(v) => Some(Self(v)),
Err(_) => None,
}
}
/// Creates a new 64-bit integer from the [`NameField`] bitfield.
#[inline]
fn into_bits(self) -> u64 {
self.into_bits()
}
/// Creates a new base-16 (hex) [`String`] from the [`NameField`] bitfield.
#[inline]
fn into_hex(self) -> String {
format(format_args!("{:016X}", self.into_bits()))
}
}
impl NameField {
/// Indicates whether the ECU/CA can negotiate an address (true = yes; false = no).
#[must_use]
pub const fn arbitrary_address(&self) -> bool {
self.arbitrary_address_bits()
}
/// These codes are associated with particular industries such as on-highway equipment,
/// agricultural equipment, and more.
#[must_use]
pub const fn industry_group(&self) -> u8 {
self.industry_group_bits()
}
/// Assigns a number to each instance on the Vehicle System (in case you connect several
/// networks – e.g. connecting cars on a train).
#[must_use]
pub const fn vehicle_system_instance(&self) -> u8 {
self.vehicle_system_instance_bits()
}
/// Vehicle systems are associated with the Industry Group and they can be, for instance,
/// “tractor” in the “Common” industry or “trailer” in the “On-Highway” industry group.
#[must_use]
pub const fn vehicle_system(&self) -> u8 {
self.vehicle_system_bits()
}
/// Always zero(false).
#[must_use]
pub const fn reserved(&self) -> bool {
self.reserved_bits()
}
/// This code, in a range between 128 and 255, is assigned according to the Industry Group. A
/// value between 0 and 127 is not associated with any other parameter.
#[must_use]
pub const fn function(&self) -> u8 {
self.function_bits()
}
/// Returns the function instance.
#[must_use]
pub const fn function_instance(&self) -> u8 {
self.function_instance_bits()
}
/// A J1939 network may accommodate several ECUs of the same kind (i.e. same functionality).
/// The Instance code separates them.
#[must_use]
pub const fn ecu_instance(&self) -> u8 {
self.ecu_instance_bits()
}
/// The 11-Bit Manufacturer Code is assigned by the SAE.
#[must_use]
pub const fn manufacturer_code(&self) -> u16 {
self.manufacturer_code_bits()
}
/// This field is assigned by the manufacturer, similar to a serial number, i.e. the code must
/// be uniquely assigned to the unit.
#[must_use]
pub const fn identity_number(&self) -> u32 {
self.identity_number_bits()
}
}
/// Represents a Protocol Data Unit (PDU) in the context of Controller Area Network (CAN).
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub enum Pdu {
NameField(NameField),
DataFiled(DataField),
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub enum PduType {
Name,
Data,
}
#[cfg(test)]
mod data_tests {
use super::*;
#[test]
fn test_data_bitfield() -> Result<(), anyhow::Error> {
let data_a = DataField::from_hex("FFFF82DF1AFFFFFF");
let be_bytes_a: [u8; 8] = [0xFF, 0xFF, 0x82, 0xDF, 0x1A, 0xFF, 0xFF, 0xFF];
let le_bytes_a: [u8; 8] = [0xFF, 0xFF, 0xFF, 0x1A, 0xDF, 0x82, 0xFF, 0xFF];
assert_eq!(data_a.byte_2(), 0x82);
assert_eq!(be_bytes_a, data_a.to_be_bytes());
assert_eq!(le_bytes_a, data_a.to_le_bytes());
assert_eq!(18446606493475143679, data_a.into_bits());
assert_eq!(
DataField(18446743089616977919),
data_a.to_be()
);
assert_eq!(
DataField(18446606493475143679),
data_a.to_le()
);
Ok(())
}
#[test]
fn test_name_bitfield() {
let name_a = NameField::new()
.with_arbitrary_address_bits(true)
.with_industry_group_bits(0)
.with_vehicle_system_instance_bits(0x5)
.with_vehicle_system_bits(0x6)
.with_reserved_bits(false)
.with_function_bits(0x5)
.with_function_instance_bits(0x2)
.with_ecu_instance_bits(0x1)
.with_manufacturer_code_bits(0x122)
.with_identity_number_bits(0xB0309);
let bytes_a: [u8; 8] = [0x09, 0x03, 0x4B, 0x24, 0x11, 0x05, 0x0C, 0x85];
let name_a_bytes = name_a.into_bits().to_le_bytes();
assert_eq!(bytes_a, name_a_bytes);
}
}