can_socket/tokio/
socket.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
use tokio::io::unix::AsyncFd;

use crate::sys;
use crate::CanFilter;
use crate::CanFrame;
use crate::CanInterface;
use crate::Deadline;

/// An asynchronous CAN socket for `tokio`.
pub struct CanSocket {
	io: AsyncFd<sys::Socket>,
}

impl std::fmt::Debug for CanSocket {
	fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
		let mut debug = f.debug_struct("CanSocket");
		#[cfg(unix)]
		{
			use std::os::unix::io::AsRawFd;
			debug.field("fd", &self.as_raw_fd());
			debug.finish()
		}

		#[cfg(not(unix))]
		debug.finish_non_exhaustive()
	}
}

impl CanSocket {
	/// Create a new socket bound to a named CAN interface.
	///
	/// This function is not async as it will either succeed or fail immediately.
	pub fn bind(interface: impl AsRef<str>) -> std::io::Result<Self> {
		let inner = sys::Socket::new(true)?;
		let interface = inner.get_interface_by_name(interface.as_ref())?;
		inner.bind(&interface)?;
		let io = AsyncFd::new(inner)?;
		Ok(Self { io })
	}

	/// Create a new socket bound to a interface by index.
	///
	/// This function is not async as it will either succeed or fail immediately.
	pub fn bind_interface_index(index: u32) -> std::io::Result<Self> {
		let inner = sys::Socket::new(true)?;
		inner.bind(&crate::sys::CanInterface::from_index(index))?;
		let io = AsyncFd::new(inner)?;
		Ok(Self { io })
	}

	/// Create a new socket bound to all CAN interfaces on the system.
	///
	/// You can use [`Self::recv_from()`] if you need to know on which interface a frame was received,
	/// and [`Self::send_to()`] to send a frame on a particular interface.
	///
	/// This function is not async as it will either succeed or fail immediately.
	pub fn bind_all() -> std::io::Result<Self> {
		Self::bind_interface_index(0)
	}

	/// Get the interface this socket is bound to.
	///
	/// If the socket is bound to all interfaces, the returned `CanInterface` will report index 0.
	pub fn local_addr(&self) -> std::io::Result<CanInterface> {
		Ok(CanInterface {
			inner: self.io.get_ref().local_addr()?,
		})
	}

	/// Send a frame over the socket.
	///
	/// Note that if this function success, it only means that the kernel accepted the frame for transmission.
	/// It does not mean the frame has been sucessfully transmitted over the CAN bus.
	pub async fn send(&self, frame: &CanFrame) -> std::io::Result<()> {
		self.io.async_io(tokio::io::Interest::WRITABLE, |inner| {
			inner.send(&frame.inner)
		}).await
	}

	/// Send a frame over the socket with a timeout.
	///
	/// Note that if this function success, it only means that the kernel accepted the frame for transmission.
	/// It does not mean the frame has been sucessfully transmitted over the CAN bus.
	///
	/// The timeout can be a [`std::time::Duration`], [`std::time::Instant`], [`tokio::time::Instant`] or any other implementator of the [`Deadline`] trait.
	pub async fn send_timeout(&self, frame: &CanFrame, timeout: impl Deadline) -> std::io::Result<()> {
		let deadline = timeout.deadline().into();
		tokio::time::timeout_at(deadline, self.send(frame)).await?
	}

	/// Try to send a frame over the socket without waiting for the socket to become writable.
	///
	/// Note that if this function success, it only means that the kernel accepted the frame for transmission.
	/// It does not mean the frame has been sucessfully transmitted over the CAN bus.
	pub fn try_send(&self, frame: &CanFrame) -> std::io::Result<()> {
		try_io(&self.io, tokio::io::Interest::WRITABLE, |inner| {
			inner.send(&frame.inner)
		})
	}

	/// Send a frame over a particular interface.
	///
	/// The interface must match the interface the socket was bound to,
	/// or the socket must have been bound to all interfaces.
	pub async fn send_to(&self, frame: &CanFrame, interface: &CanInterface) -> std::io::Result<()> {
		self.io.async_io(tokio::io::Interest::WRITABLE, |inner| {
			inner.send_to(&frame.inner, &interface.inner)
		}).await
	}

	/// Send a frame over a particular interface.
	///
	/// The interface must match the interface the socket was bound to,
	/// or the socket must have been bound to all interfaces.
	///
	/// Note that if this function success, it only means that the kernel accepted the frame for transmission.
	/// It does not mean the frame has been sucessfully transmitted over the CAN bus.
	///
	/// The timeout can be a [`std::time::Duration`], [`std::time::Instant`], [`tokio::time::Instant`] or any other implementator of the [`Deadline`] trait.
	pub async fn send_to_timeout(&self, frame: &CanFrame, interface: &CanInterface, timeout: impl Deadline) -> std::io::Result<()> {
		let deadline = timeout.deadline().into();
		tokio::time::timeout_at(deadline, self.send_to(frame, interface)).await?
	}

	/// Try to send a frame over the socket without waiting for the socket to become writable.
	///
	/// Note that if this function success, it only means that the kernel accepted the frame for transmission.
	/// It does not mean the frame has been sucessfully transmitted over the CAN bus.
	pub fn try_send_to(&self, frame: &CanFrame, interface: &CanInterface) -> std::io::Result<()> {
		try_io(&self.io, tokio::io::Interest::WRITABLE, |inner| {
			inner.send_to(&frame.inner, &interface.inner)
		})
	}

	/// Receive a frame from the socket.
	pub async fn recv(&self) -> std::io::Result<CanFrame> {
		self.io.async_io(tokio::io::Interest::READABLE, |inner| {
			Ok(CanFrame {
				inner: inner.recv()?,
			})
		}).await
	}

	/// Receive a frame from the socket with a timeout.
	///
	/// The timeout can be a [`std::time::Duration`], [`std::time::Instant`], [`tokio::time::Instant`] or any other implementator of the [`Deadline`] trait.
	pub async fn recv_timeout(&self, timeout: impl Deadline) -> std::io::Result<CanFrame> {
		let deadline = timeout.deadline().into();
		tokio::time::timeout_at(deadline, self.recv()).await?
	}

	/// Receive a frame from the socket, without waiting for one to become available.
	pub fn try_recv(&self) -> std::io::Result<CanFrame> {
		try_io(&self.io, tokio::io::Interest::READABLE, |socket| {
			Ok(CanFrame {
				inner: socket.recv()?,
			})
		})
	}

	/// Receive a frame from the socket, including information about which interface the frame was received on.
	pub async fn recv_from(&self) -> std::io::Result<(CanFrame, CanInterface)> {
		self.io.async_io(tokio::io::Interest::READABLE, |inner| {
			let (frame, interface) = inner.recv_from()?;
			let frame = CanFrame { inner: frame };
			let interface = CanInterface { inner: interface };
			Ok((frame, interface))
		}).await
	}

	/// Receive a frame from the socket with a timeout, including information about which interface the frame was received on.
	///
	/// The timeout can be a [`std::time::Duration`], [`std::time::Instant`], [`tokio::time::Instant`] or any other implementator of the [`Deadline`] trait.
	pub async fn recv_from_timeout(&self, timeout: impl Deadline) -> std::io::Result<(CanFrame, CanInterface)> {
		let deadline = timeout.deadline().into();
		tokio::time::timeout_at(deadline, self.recv_from()).await?
	}

	/// Receive a frame from the socket, without waiting for one to become available.
	pub fn try_recv_from(&self) -> std::io::Result<(CanFrame, CanInterface)> {
		try_io(&self.io, tokio::io::Interest::READABLE, |socket| {
			let (frame, interface) = socket.recv_from()?;
			let frame = CanFrame { inner: frame };
			let interface = CanInterface { inner: interface };
			Ok((frame, interface))
		})
	}

	/// Set the list of filters on the socket.
	///
	/// When a socket is created, it will receive all frames from the CAN interface.
	/// You can restrict this by setting the filters with this function.
	///
	/// A frame has to match only one of the filters in the list to be received by the socket.
	pub fn set_filters(&self, filters: &[CanFilter]) -> std::io::Result<()> {
		self.io.get_ref().set_filters(filters)
	}

	/// Check if the loopback option of the socket is enabled.
	///
	/// When enabled (the default for new sockets),
	/// frames sent on the same interface by other sockets are also received by this socket.
	pub fn get_loopback(&self) -> std::io::Result<bool> {
		self.io.get_ref().get_loopback()
	}

	/// Enable or disabling the loopback option of the socket.
	///
	/// When enabled (the default for new sockets),
	/// frames sent on the same interface by other sockets are also received by this socket.
	///
	/// See `Self::set_receive_own_messages()` if you also want to receive messages sens on *this* socket.
	pub fn set_loopback(&self, enable: bool) -> std::io::Result<()> {
		self.io.get_ref().set_loopback(enable)
	}

	/// Check if the receive own messages option of the socket is enabled.
	///
	/// When this option is enabled, frames sent on this socket are also delivered to this socket.
	///
	/// Note that frames sent on this socket are subject to all the same filtering mechanisms as other frames.
	/// To receive frames send on this socket, you must also to ensure that the loopback option is enabled ([`Self::get_loopback()`]),
	/// and that the frame is not discarded by the filters ([`Self::set_filters()`]).
	pub fn get_receive_own_messages(&self) -> std::io::Result<bool> {
		self.io.get_ref().get_receive_own_messages()
	}

	/// Enable or disable the receive own messages option of the socket.
	///
	/// When this option is enabled, frames sent on this socket are also delivered to this socket.
	///
	/// Note that frames sent on this socket are subject to all the same filtering mechanisms as other frames.
	/// To receive frames send on this socket, you must also to ensure that the loopback option is enabled ([`Self::set_loopback()`]),
	/// and that the frame is not discarded by the filters ([`Self::set_filters()`]).
	pub fn set_receive_own_messages(&self, enable: bool) -> std::io::Result<()> {
		self.io.get_ref().set_receive_own_messages(enable)
	}
}

impl std::os::fd::AsFd for CanSocket {
	fn as_fd(&self) -> std::os::fd::BorrowedFd<'_> {
		self.io.as_fd()
	}
}

impl From<CanSocket> for std::os::fd::OwnedFd {
	fn from(value: CanSocket) -> Self {
		value.io.into_inner().into()
	}
}

impl TryFrom<std::os::fd::OwnedFd> for CanSocket {
	type Error = std::io::Error;

	fn try_from(value: std::os::fd::OwnedFd) -> std::io::Result<Self> {
		let io = AsyncFd::new(sys::Socket::from(value))?;
		Ok(Self { io })
	}
}

impl std::os::fd::AsRawFd for CanSocket {
	fn as_raw_fd(&self) -> std::os::fd::RawFd {
		self.io.as_raw_fd()
	}
}

impl std::os::fd::IntoRawFd for CanSocket {
	fn into_raw_fd(self) -> std::os::fd::RawFd {
		self.io.into_inner().into_raw_fd()
	}
}

fn try_io<T, F, R>(fd: &AsyncFd<T>, interest: tokio::io::Interest, f: F) -> std::io::Result<R>
where
	T: std::os::unix::io::AsRawFd,
	F: FnOnce(&T) -> std::io::Result<R>,
{
	// TODO: Replace this function with `tokio::io::AsyncFd::try_io` when PR gets merged and released:
	// https://github.com/tokio-rs/tokio/pull/6967
	use std::future::Future;

	let waker = unsafe { std::task::Waker::from_raw(nop_waker_new()) };
	let mut context = std::task::Context::from_waker(&waker);

	let mut f = Some(f);
	let work = fd.async_io(interest, move |inner| {
		let f = f.take().unwrap();
		f(inner)
	});
	let work = std::pin::pin!(work);
	match work.poll(&mut context) {
		std::task::Poll::Ready(result) => result,
		std::task::Poll::Pending => Err(std::io::ErrorKind::WouldBlock.into()),
	}
}

const NOP_WAKER_VTABLE: std::task::RawWakerVTable = std::task::RawWakerVTable::new(nop_waker_clone, nop_waker_wake, nop_waker_wake_by_ref, nop_waker_drop);

fn nop_waker_new() -> std::task::RawWaker {
	std::task::RawWaker::new(std::ptr::null(), &NOP_WAKER_VTABLE)
}
fn nop_waker_clone(_waker: *const ()) -> std::task::RawWaker {
	nop_waker_new()
}
fn nop_waker_wake(_waker: *const ()) { }
fn nop_waker_wake_by_ref(_waker: *const ()) { }
fn nop_waker_drop(_waker: *const ()) { }