can_socket/tokio/socket.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
use tokio::io::unix::AsyncFd;
use crate::sys;
use crate::CanFilter;
use crate::CanFrame;
use crate::CanInterface;
use crate::Deadline;
/// An asynchronous CAN socket for `tokio`.
pub struct CanSocket {
io: AsyncFd<sys::Socket>,
}
impl std::fmt::Debug for CanSocket {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let mut debug = f.debug_struct("CanSocket");
#[cfg(unix)]
{
use std::os::unix::io::AsRawFd;
debug.field("fd", &self.as_raw_fd());
debug.finish()
}
#[cfg(not(unix))]
debug.finish_non_exhaustive()
}
}
impl CanSocket {
/// Create a new socket bound to a named CAN interface.
///
/// This function is not async as it will either succeed or fail immediately.
pub fn bind(interface: impl AsRef<str>) -> std::io::Result<Self> {
let inner = sys::Socket::new(true)?;
let interface = inner.get_interface_by_name(interface.as_ref())?;
inner.bind(&interface)?;
let io = AsyncFd::new(inner)?;
Ok(Self { io })
}
/// Create a new socket bound to a interface by index.
///
/// This function is not async as it will either succeed or fail immediately.
pub fn bind_interface_index(index: u32) -> std::io::Result<Self> {
let inner = sys::Socket::new(true)?;
inner.bind(&crate::sys::CanInterface::from_index(index))?;
let io = AsyncFd::new(inner)?;
Ok(Self { io })
}
/// Create a new socket bound to all CAN interfaces on the system.
///
/// You can use [`Self::recv_from()`] if you need to know on which interface a frame was received,
/// and [`Self::send_to()`] to send a frame on a particular interface.
///
/// This function is not async as it will either succeed or fail immediately.
pub fn bind_all() -> std::io::Result<Self> {
Self::bind_interface_index(0)
}
/// Get the interface this socket is bound to.
///
/// If the socket is bound to all interfaces, the returned `CanInterface` will report index 0.
pub fn local_addr(&self) -> std::io::Result<CanInterface> {
Ok(CanInterface {
inner: self.io.get_ref().local_addr()?,
})
}
/// Send a frame over the socket.
///
/// Note that if this function success, it only means that the kernel accepted the frame for transmission.
/// It does not mean the frame has been sucessfully transmitted over the CAN bus.
pub async fn send(&self, frame: &CanFrame) -> std::io::Result<()> {
self.io.async_io(tokio::io::Interest::WRITABLE, |inner| {
inner.send(&frame.inner)
}).await
}
/// Send a frame over the socket with a timeout.
///
/// Note that if this function success, it only means that the kernel accepted the frame for transmission.
/// It does not mean the frame has been sucessfully transmitted over the CAN bus.
///
/// The timeout can be a [`std::time::Duration`], [`std::time::Instant`], [`tokio::time::Instant`] or any other implementator of the [`Deadline`] trait.
pub async fn send_timeout(&self, frame: &CanFrame, timeout: impl Deadline) -> std::io::Result<()> {
let deadline = timeout.deadline().into();
tokio::time::timeout_at(deadline, self.send(frame)).await?
}
/// Try to send a frame over the socket without waiting for the socket to become writable.
///
/// Note that if this function success, it only means that the kernel accepted the frame for transmission.
/// It does not mean the frame has been sucessfully transmitted over the CAN bus.
pub fn try_send(&self, frame: &CanFrame) -> std::io::Result<()> {
try_io(&self.io, tokio::io::Interest::WRITABLE, |inner| {
inner.send(&frame.inner)
})
}
/// Send a frame over a particular interface.
///
/// The interface must match the interface the socket was bound to,
/// or the socket must have been bound to all interfaces.
pub async fn send_to(&self, frame: &CanFrame, interface: &CanInterface) -> std::io::Result<()> {
self.io.async_io(tokio::io::Interest::WRITABLE, |inner| {
inner.send_to(&frame.inner, &interface.inner)
}).await
}
/// Send a frame over a particular interface.
///
/// The interface must match the interface the socket was bound to,
/// or the socket must have been bound to all interfaces.
///
/// Note that if this function success, it only means that the kernel accepted the frame for transmission.
/// It does not mean the frame has been sucessfully transmitted over the CAN bus.
///
/// The timeout can be a [`std::time::Duration`], [`std::time::Instant`], [`tokio::time::Instant`] or any other implementator of the [`Deadline`] trait.
pub async fn send_to_timeout(&self, frame: &CanFrame, interface: &CanInterface, timeout: impl Deadline) -> std::io::Result<()> {
let deadline = timeout.deadline().into();
tokio::time::timeout_at(deadline, self.send_to(frame, interface)).await?
}
/// Try to send a frame over the socket without waiting for the socket to become writable.
///
/// Note that if this function success, it only means that the kernel accepted the frame for transmission.
/// It does not mean the frame has been sucessfully transmitted over the CAN bus.
pub fn try_send_to(&self, frame: &CanFrame, interface: &CanInterface) -> std::io::Result<()> {
try_io(&self.io, tokio::io::Interest::WRITABLE, |inner| {
inner.send_to(&frame.inner, &interface.inner)
})
}
/// Receive a frame from the socket.
pub async fn recv(&self) -> std::io::Result<CanFrame> {
self.io.async_io(tokio::io::Interest::READABLE, |inner| {
Ok(CanFrame {
inner: inner.recv()?,
})
}).await
}
/// Receive a frame from the socket with a timeout.
///
/// The timeout can be a [`std::time::Duration`], [`std::time::Instant`], [`tokio::time::Instant`] or any other implementator of the [`Deadline`] trait.
pub async fn recv_timeout(&self, timeout: impl Deadline) -> std::io::Result<CanFrame> {
let deadline = timeout.deadline().into();
tokio::time::timeout_at(deadline, self.recv()).await?
}
/// Receive a frame from the socket, without waiting for one to become available.
pub fn try_recv(&self) -> std::io::Result<CanFrame> {
try_io(&self.io, tokio::io::Interest::READABLE, |socket| {
Ok(CanFrame {
inner: socket.recv()?,
})
})
}
/// Receive a frame from the socket, including information about which interface the frame was received on.
pub async fn recv_from(&self) -> std::io::Result<(CanFrame, CanInterface)> {
self.io.async_io(tokio::io::Interest::READABLE, |inner| {
let (frame, interface) = inner.recv_from()?;
let frame = CanFrame { inner: frame };
let interface = CanInterface { inner: interface };
Ok((frame, interface))
}).await
}
/// Receive a frame from the socket with a timeout, including information about which interface the frame was received on.
///
/// The timeout can be a [`std::time::Duration`], [`std::time::Instant`], [`tokio::time::Instant`] or any other implementator of the [`Deadline`] trait.
pub async fn recv_from_timeout(&self, timeout: impl Deadline) -> std::io::Result<(CanFrame, CanInterface)> {
let deadline = timeout.deadline().into();
tokio::time::timeout_at(deadline, self.recv_from()).await?
}
/// Receive a frame from the socket, without waiting for one to become available.
pub fn try_recv_from(&self) -> std::io::Result<(CanFrame, CanInterface)> {
try_io(&self.io, tokio::io::Interest::READABLE, |socket| {
let (frame, interface) = socket.recv_from()?;
let frame = CanFrame { inner: frame };
let interface = CanInterface { inner: interface };
Ok((frame, interface))
})
}
/// Set the list of filters on the socket.
///
/// When a socket is created, it will receive all frames from the CAN interface.
/// You can restrict this by setting the filters with this function.
///
/// A frame has to match only one of the filters in the list to be received by the socket.
pub fn set_filters(&self, filters: &[CanFilter]) -> std::io::Result<()> {
self.io.get_ref().set_filters(filters)
}
/// Check if the loopback option of the socket is enabled.
///
/// When enabled (the default for new sockets),
/// frames sent on the same interface by other sockets are also received by this socket.
pub fn get_loopback(&self) -> std::io::Result<bool> {
self.io.get_ref().get_loopback()
}
/// Enable or disabling the loopback option of the socket.
///
/// When enabled (the default for new sockets),
/// frames sent on the same interface by other sockets are also received by this socket.
///
/// See `Self::set_receive_own_messages()` if you also want to receive messages sens on *this* socket.
pub fn set_loopback(&self, enable: bool) -> std::io::Result<()> {
self.io.get_ref().set_loopback(enable)
}
/// Check if the receive own messages option of the socket is enabled.
///
/// When this option is enabled, frames sent on this socket are also delivered to this socket.
///
/// Note that frames sent on this socket are subject to all the same filtering mechanisms as other frames.
/// To receive frames send on this socket, you must also to ensure that the loopback option is enabled ([`Self::get_loopback()`]),
/// and that the frame is not discarded by the filters ([`Self::set_filters()`]).
pub fn get_receive_own_messages(&self) -> std::io::Result<bool> {
self.io.get_ref().get_receive_own_messages()
}
/// Enable or disable the receive own messages option of the socket.
///
/// When this option is enabled, frames sent on this socket are also delivered to this socket.
///
/// Note that frames sent on this socket are subject to all the same filtering mechanisms as other frames.
/// To receive frames send on this socket, you must also to ensure that the loopback option is enabled ([`Self::set_loopback()`]),
/// and that the frame is not discarded by the filters ([`Self::set_filters()`]).
pub fn set_receive_own_messages(&self, enable: bool) -> std::io::Result<()> {
self.io.get_ref().set_receive_own_messages(enable)
}
}
impl std::os::fd::AsFd for CanSocket {
fn as_fd(&self) -> std::os::fd::BorrowedFd<'_> {
self.io.as_fd()
}
}
impl From<CanSocket> for std::os::fd::OwnedFd {
fn from(value: CanSocket) -> Self {
value.io.into_inner().into()
}
}
impl TryFrom<std::os::fd::OwnedFd> for CanSocket {
type Error = std::io::Error;
fn try_from(value: std::os::fd::OwnedFd) -> std::io::Result<Self> {
let io = AsyncFd::new(sys::Socket::from(value))?;
Ok(Self { io })
}
}
impl std::os::fd::AsRawFd for CanSocket {
fn as_raw_fd(&self) -> std::os::fd::RawFd {
self.io.as_raw_fd()
}
}
impl std::os::fd::IntoRawFd for CanSocket {
fn into_raw_fd(self) -> std::os::fd::RawFd {
self.io.into_inner().into_raw_fd()
}
}
fn try_io<T, F, R>(fd: &AsyncFd<T>, interest: tokio::io::Interest, f: F) -> std::io::Result<R>
where
T: std::os::unix::io::AsRawFd,
F: FnOnce(&T) -> std::io::Result<R>,
{
// TODO: Replace this function with `tokio::io::AsyncFd::try_io` when PR gets merged and released:
// https://github.com/tokio-rs/tokio/pull/6967
use std::future::Future;
let waker = unsafe { std::task::Waker::from_raw(nop_waker_new()) };
let mut context = std::task::Context::from_waker(&waker);
let mut f = Some(f);
let work = fd.async_io(interest, move |inner| {
let f = f.take().unwrap();
f(inner)
});
let work = std::pin::pin!(work);
match work.poll(&mut context) {
std::task::Poll::Ready(result) => result,
std::task::Poll::Pending => Err(std::io::ErrorKind::WouldBlock.into()),
}
}
const NOP_WAKER_VTABLE: std::task::RawWakerVTable = std::task::RawWakerVTable::new(nop_waker_clone, nop_waker_wake, nop_waker_wake_by_ref, nop_waker_drop);
fn nop_waker_new() -> std::task::RawWaker {
std::task::RawWaker::new(std::ptr::null(), &NOP_WAKER_VTABLE)
}
fn nop_waker_clone(_waker: *const ()) -> std::task::RawWaker {
nop_waker_new()
}
fn nop_waker_wake(_waker: *const ()) { }
fn nop_waker_wake_by_ref(_waker: *const ()) { }
fn nop_waker_drop(_waker: *const ()) { }