1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
crate::ix!();

/**
 | @brief Segment reduction op with optional fused
 | embedding lookup
 |
 | Base implementation for SortedSegmentXXX and
 | SparseSortedSegmentXXX depending on SparseFused
 |  static argument.
 |
 | Inputs:
 |   0: DATA - input embedding to do lookups in
 |   1..P: AUX_ARG_<I> - optional additional arguments to be passed to the
 |                       reducer, should have the same first dimension as
 |                       SEGMENT_IDS (e.g. scalars in WeightedSum)
 |   # if SparseFused == true:
 |   P+1: INDICES - 1-D vector with indices to look up in DATA. Should have the
 |                  same dimension as SEGMENT_IDS
 |   # P+1 if SparseFused == false:
 |   P+1 or P+2: SEGMENT_IDS - sorted segment ids 1-D vector
 |
 | Output:
 |
 |   Tensor with first dimension of K, where K is
 |   the max segment id + 1. Rest of dimensions are
 |    decided by reducer but usually are the same
 |    size as extra dimensions of DATA
 |
 |  bool SparseFused = true,
 |  class InputAccessor = BaseInputAccessor<T>>
 */
#[USE_OPERATOR_CONTEXT_FUNCTIONS]
pub struct AbstractSortedSegmentOp<T,SIndex,Context,Reducer,const SparseFused: bool,InputAccessor> {
    storage:         OperatorStorage,
    context:         Context,
    input_accessor:  InputAccessor,
    phantom:         PhantomData<T>,
    phantomSIndex:   PhantomData<SIndex>,
    phantomReducer:  PhantomData<Reducer>,
}

/**
  | TODO: figure out what the two comments
  | below break*, if anything
  |
  */
pub enum AbstractSortedSegmentOpInputTags {
    INDICES,    // = <R as Reducer>::InputCount,
    SEGMENT_IDS,// = <R as Reducer>::InputCount + ternary![SparseFused,1,0]
}

impl<T,SIndex,Context,R: Reducer,const SparseFused: bool,InputAccessor> 
AbstractSortedSegmentOp<T,SIndex,Context,R,SparseFused,InputAccessor> {

    const kSelfInputs: isize = ternary![SparseFused, 2, 1];
    const kNumInputs:  isize = <R as Reducer>::InputCount + Self::kSelfInputs;

    #[inline] pub fn run_on_device(&mut self) -> bool {
        
        todo!();
        /*
            if (SparseFused) {
          return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
              this, Input(INDICES));
        } else {
          // type doesn't matter
          return DoRunWithType<int64_t>();
        }
        */
    }
    
    #[inline] pub fn do_run_with_type<IndexType>(&mut self) -> bool {
    
        todo!();
        /*
            // If more complicated fixed size logic becomes necessary, it can be moved
        // to the reducer class
        int64_t in_block_size = Input(0).size_from_dim(1);
        return DispatchHelper<typename Reducer::FixedDispatch, IndexType>::call(
            this, in_block_size);
        */
    }
    
    #[inline] pub fn do_run_with_value<IndexType, const FixedSize: i32>(&mut self) -> bool {
    
        todo!();
        /*
            auto& dataInput = Input(0);
        auto& segment_ids = Input(SEGMENT_IDS);

        CAFFE_ENFORCE_EQ(1, segment_ids.dim(), "SEGMENT_IDS must be a vector");
        int64_t N = segment_ids.size(0);
        const int64_t M = dataInput.size(0);

        const IndexType* idxs;
        if (SparseFused) { // static if
          auto& indices = Input(INDICES);
          CAFFE_ENFORCE_EQ(1, indices.dim(), "INDICES must be a vector");
          CAFFE_ENFORCE_EQ(
              N,
              indices.size(0),
              "SEGMENT_IDS must have the same length as INDICES");
          idxs = indices.template data<IndexType>();
        } else {
          CAFFE_ENFORCE_EQ(
              N, M, "DATA must have the same first dimension as SEGMENT_IDS");
        }

        // It would probably look nicer with varargs templates but it's too much
        // metaprogramming
        typename Reducer::Meta ctx;
        ctx.observeInput(0, dataInput, 1);
        for (int i = 1; i < <R as Reducer>::InputCount; ++i) {
          auto& aux_in = Input(i);
          CAFFE_ENFORCE_EQ(
              N,
              aux_in.size(0),
              "Input ",
              i,
              " must have the same first dim as SEGMENT_IDS");
          ctx.observeInput(i, aux_in, 1);
        }

        OPERATOR_NEEDS_FEATURE(
            inputAccessor_.observeInput(dataInput),
            "Unsupported input type: ",
            dataInput.dtype().name(),
            ".");

        const SIndex* s_ids = segment_ids.template data<SIndex>();

        const SIndex K = N > 0 ? s_ids[N - 1] + 1 : 0;
        vector<int64_t> shape;
        shape.push_back(K);
        ctx.appendOutputShape(&shape);
        auto* output = Output(0, shape, at::dtype<T>());

        T* out = output->template mutable_data<T>();
        if (N == 0) {
          return true;
        }
        int64_t in_block_size = dataInput.size_from_dim(1);
        int64_t out_block_size = output->size_from_dim(1);

        // Assume the segments are sorted and there are no gaps
        CAFFE_ENFORCE_EQ(0, s_ids[0], "Indices must be sorted and not have gaps");
        for (int64_t i = 0; i < N;) {
          int64_t start = i;

          Reducer r(ctx, out + out_block_size * s_ids[start], &context_);
          for (; i < N && s_ids[start] == s_ids[i]; ++i) {
            IndexType idx;
            if (SparseFused) { // static if
              CAFFE_ENFORCE(
                  0 <= idxs[i] && idxs[i] < M,
                  "Index out of bounds: ",
                  idxs[i],
                  ", range 0 to ",
                  M);
              idx = idxs[i];
            } else {
              idx = i;
            }
            r.template process<FixedSize>(
                ctx, inputAccessor_.getBlockPtr(in_block_size, idx), i, &context_);
          }

          r.template finish<FixedSize>(ctx, &context_);
          // check correctness of the next segment
          if (i < N) {
            CAFFE_ENFORCE_EQ(
                s_ids[start] + 1,
                s_ids[i],
                "Indices must be sorted and not have gaps");
          }
        }
        return true;
        */
    }
}