c64_assembler/generator/
program.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
use c64_assembler_6502::{
    instruction::InstructionDef,
    opcodes::{NO_ZEROPAGE, NO_ZEROPAGE_X, NO_ZEROPAGE_Y},
};

use crate::{
    instruction::{operation::Operation, Instruction},
    memory::{
        address_mode::{AddressMode, Immediate},
        Address, ZeroPage,
    },
    validator::{AssemblerResult, Error},
    Application, Instructions, Module,
};

use super::Generator;

const PROGRAM_HEADER_BYTE_SIZE: Address = 2;

/// .PRG byte code generator
#[derive(Default, Debug)]
pub struct ProgramGenerator {
    output: Vec<u8>,
}

impl Generator for ProgramGenerator {
    type Output = Vec<u8>;

    fn generate(mut self, application: Application) -> AssemblerResult<Self::Output> {
        self.add_u16(application.entry_point);
        for module in &application.modules {
            self.generate_module(&application, module)?;
        }
        Ok(self.output)
    }
}

impl ProgramGenerator {
    fn generate_module(&mut self, application: &Application, module: &Module) -> AssemblerResult<()> {
        self.generate_instructions(application, &module.instructions)?;
        for function in &module.functions {
            self.generate_instructions(application, &function.instructions)?;
        }
        Ok(())
    }

    fn generate_instructions(&mut self, application: &Application, instructions: &Instructions) -> AssemblerResult<()> {
        for instruction in &instructions.instructions {
            self.generate_instruction(application, instruction)?;
        }
        Ok(())
    }

    fn generate_instruction(&mut self, application: &Application, instruction: &Instruction) -> AssemblerResult<()> {
        match (&instruction.operation.definition(), &instruction.operation) {
            (Some(definition), _) => self.add_byte_code(application, &instruction.address_mode, definition),
            (None, Operation::Label(_)) => {
                // Labels don't have bytes in the byte stream, they are only markers
                Ok(())
            }
            (None, Operation::Raw(bytes)) => {
                self.add_bytes(bytes);
                Ok(())
            }

            (_, _) => Err(Error::InternalCompilerError),
        }
    }

    fn add_byte_code(
        &mut self,
        application: &Application,
        address_mode: &AddressMode,
        instruction: &InstructionDef,
    ) -> AssemblerResult<()> {
        match address_mode {
            AddressMode::Implied => {
                self.add_u8(instruction.implied);
            }
            AddressMode::Immediate(Immediate::Byte(byte)) => {
                self.add_u8(instruction.immediate);
                self.add_u8(*byte);
            }
            AddressMode::Immediate(Immediate::Low(address_reference)) => {
                self.add_u8(instruction.immediate);
                self.add_u8(application.address(address_reference).low());
            }
            AddressMode::Immediate(Immediate::High(address_reference)) => {
                self.add_u8(instruction.immediate);
                self.add_u8(application.address(address_reference).high());
            }
            AddressMode::Accumulator => {
                self.add_u8(instruction.accumulator);
            }
            AddressMode::Absolute(address_reference) => {
                let address = application.address(address_reference);
                if instruction.zeropage != NO_ZEROPAGE && address.is_zeropage() {
                    self.add_u8(instruction.zeropage);
                    self.add_u8(application.address(address_reference).low());
                } else {
                    self.add_u8(instruction.absolute);
                    self.add_u16(address);
                }
            }
            AddressMode::AbsoluteX(address_reference) => {
                let address = application.address(address_reference);
                if instruction.zeropage_x != NO_ZEROPAGE_X && address.is_zeropage() {
                    self.add_u8(instruction.zeropage_x);
                    self.add_u8(address.low());
                } else {
                    self.add_u8(instruction.absolute_x);
                    self.add_u16(address);
                }
            }
            AddressMode::AbsoluteY(address_reference) => {
                let address = application.address(address_reference);
                if instruction.zeropage_y != NO_ZEROPAGE_Y && address.is_zeropage() {
                    self.add_u8(instruction.zeropage_y);
                    self.add_u8(address.low());
                } else {
                    self.add_u8(instruction.absolute_y);
                    self.add_u16(address);
                }
                self.add_u8(instruction.absolute_y);
                self.add_u16(address);
            }
            AddressMode::Relative(address_reference) => {
                let current_instruction =
                    application.entry_point + self.output.len() as Address - PROGRAM_HEADER_BYTE_SIZE;
                let address = application.address(address_reference);
                let next_instruction = current_instruction + address_mode.byte_size(application)?;
                let relative_address = (address as i32 - next_instruction as i32) as i8;

                self.add_u8(instruction.relative);
                self.add_u8(relative_address as u8);
            }
            AddressMode::Indirect(address_reference) => {
                let address = application.address(address_reference);
                self.add_u8(instruction.indirect);
                self.add_u16(address);
            }
            AddressMode::IndexedIndirect(address_reference) => {
                let address = application.address(address_reference);
                assert!(address.is_zeropage());
                self.add_u8(instruction.indexed_indirect);
                self.add_u8(address.low());
            }
            AddressMode::IndirectIndexed(address_reference) => {
                let address = application.address(address_reference);
                self.add_u8(instruction.indirect_indexed);
                self.add_u8(address.low());
            }
        };
        Ok(())
    }
}

impl ProgramGenerator {
    fn add_u8(&mut self, byte: u8) {
        self.output.push(byte);
    }

    fn add_u16(&mut self, address: Address) {
        self.add_u8(address.low());
        self.add_u8(address.high());
    }

    fn add_bytes(&mut self, bytes: &[u8]) {
        for byte in bytes {
            self.output.push(*byte);
        }
    }
}

/// Utility function to print the set of bytes into a hexdump kind of format to the console.
pub fn print_hexdump(bytes: &[u8]) {
    let mut address = 0;
    bytes.chunks(16).for_each(|chunk| {
        let mut line = Vec::new();

        line.push(format!("{:04X}: ", address));
        address += 16;

        chunk.chunks(4).for_each(|chunk| {
            chunk.iter().for_each(|byte| {
                line.push(format!("{:02X}", byte));
            });
            line.push("".to_string());
        });
        println!("{}", line.join(" ").trim_end());
    });
}