1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#![recursion_limit = "512"]

extern crate proc_macro;
extern crate quote;
extern crate syn;

use proc_macro::{Span, TokenStream};
use quote::__rt;
use quote::quote;
use syn::parse::Error;
use syn::punctuated::Punctuated;
use syn::spanned::Spanned;
use syn::{
    parse_macro_input, Attribute, Field, Fields, Ident, ItemStruct, Lit, Meta, NestedMeta, Path,
    PathArguments, PathSegment, Token,
};

#[cfg(target_endian = "big")]
compile_error!("Big endian architectures are not currently supported");

/// This struct keeps track of a single bitfield attr's params
/// as well as the bitfield's field name.
#[derive(Debug)]
struct BFFieldAttr {
    field_name: Ident,
    name: String,
    ty: String,
    bits: (String, __rt::Span),
}

fn parse_bitfield_attr(
    attr: &Attribute,
    field_ident: &Ident,
) -> Result<Option<BFFieldAttr>, Error> {
    let mut name = None;
    let mut ty = None;
    let mut bits = None;
    let mut bits_span = None;

    if let Meta::List(meta_list) = attr.parse_meta()? {
        for nested_meta in meta_list.nested {
            if let NestedMeta::Meta(Meta::NameValue(meta_name_value)) = nested_meta {
                let rhs_string = match meta_name_value.lit {
                    Lit::Str(lit_str) => lit_str.value(),
                    _ => {
                        let err_str = "Found bitfield attribute with non str literal assignment";
                        let span = meta_name_value.ident.span();

                        return Err(Error::new(span, err_str));
                    }
                };

                let lhs_string = meta_name_value.ident.to_string();

                match lhs_string.as_str() {
                    "name" => name = Some(rhs_string),
                    "ty" => ty = Some(rhs_string),
                    "bits" => {
                        bits = Some(rhs_string);
                        bits_span = Some(meta_name_value.ident.span());
                    }
                    // This one shouldn't ever occur here,
                    // but we're handling it just to be safe
                    "padding" => {
                        return Ok(None);
                    }
                    _ => {}
                }
            } else if let NestedMeta::Meta(Meta::Word(ref ident)) = nested_meta {
                if ident == "padding" {
                    return Ok(None);
                }
            }
        }
    }

    if name.is_none() || ty.is_none() || bits.is_none() {
        let mut missing_fields = Vec::new();

        if name.is_none() {
            missing_fields.push("name");
        }

        if ty.is_none() {
            missing_fields.push("ty");
        }

        if bits.is_none() {
            missing_fields.push("bits");
        }

        let err_str = format!("Missing bitfield params: {:?}", missing_fields);
        let span = attr.path.segments.span();

        return Err(Error::new(span, err_str));
    }

    Ok(Some(BFFieldAttr {
        field_name: field_ident.clone(),
        name: name.unwrap(),
        ty: ty.unwrap(),
        bits: (bits.unwrap(), bits_span.unwrap()),
    }))
}

fn filter_and_parse_fields(field: &Field) -> Vec<Result<BFFieldAttr, Error>> {
    let attrs: Vec<_> = field
        .attrs
        .iter()
        .filter(|attr| attr.path.segments.last().unwrap().value().ident == "bitfield")
        .collect();

    if attrs.len() == 0 {
        return Vec::new();
    }

    attrs
        .into_iter()
        .map(|attr| parse_bitfield_attr(attr, &field.ident.as_ref().unwrap()))
        .flat_map(Result::transpose) // Remove the Ok(None) values
        .collect()
}

fn parse_bitfield_ty_path(field: &BFFieldAttr) -> Path {
    let leading_colon = if field.ty.starts_with("::") {
        Some(Token![::]([
            Span::call_site().into(),
            Span::call_site().into(),
        ]))
    } else {
        None
    };

    let mut segments = Punctuated::new();
    let mut segment_strings = field.ty.split("::").peekable();

    while let Some(segment_string) = segment_strings.next() {
        segments.push_value(PathSegment {
            ident: Ident::new(segment_string, Span::call_site().into()),
            arguments: PathArguments::None,
        });

        if segment_strings.peek().is_some() {
            segments.push_punct(Token![::]([
                Span::call_site().into(),
                Span::call_site().into(),
            ]));
        }
    }

    Path {
        leading_colon,
        segments,
    }
}

#[proc_macro_derive(BitfieldStruct, attributes(bitfield))]
pub fn bitfield_struct(input: TokenStream) -> TokenStream {
    let struct_item = parse_macro_input!(input as ItemStruct);

    match bitfield_struct_impl(struct_item) {
        Ok(ts) => ts,
        Err(error) => error.to_compile_error().into(),
    }
}

fn bitfield_struct_impl(struct_item: ItemStruct) -> Result<TokenStream, Error> {
    // REVIEW: Should we throw a compile error if bit ranges on a single field overlap?
    let struct_ident = struct_item.ident;
    let fields = match struct_item.fields {
        Fields::Named(named_fields) => named_fields.named,
        Fields::Unnamed(_) => {
            let err_str =
                "Unnamed struct fields are not currently supported but may be in the future.";
            let span = struct_ident.span();

            return Err(Error::new(span, err_str));
        }
        Fields::Unit => {
            let err_str = "Cannot create bitfield struct out of struct with no fields";
            let span = struct_ident.span();

            return Err(Error::new(span, err_str));
        }
    };
    let bitfields: Result<Vec<BFFieldAttr>, Error> =
        fields.iter().flat_map(filter_and_parse_fields).collect();
    let bitfields = bitfields?;
    let field_types: Vec<_> = bitfields.iter().map(parse_bitfield_ty_path).collect();
    let field_types_return = &field_types;
    let field_types_typedef = &field_types;
    let field_types_setter_arg = &field_types;
    let method_names: Vec<_> = bitfields
        .iter()
        .map(|field| Ident::new(&field.name, Span::call_site().into()))
        .collect();
    let field_names: Vec<_> = bitfields.iter().map(|field| &field.field_name).collect();
    let field_names_setters = &field_names;
    let field_names_getters = &field_names;
    let method_name_setters: Vec<_> = method_names
        .iter()
        .map(|field_ident| {
            let span = Span::call_site().into();
            let setter_name = &format!("set_{}", field_ident);

            Ident::new(setter_name, span)
        })
        .collect();
    let field_bit_info: Result<Vec<_>, Error> = bitfields
        .iter()
        .map(|field| {
            let bit_string = &field.bits.0;
            let nums: Vec<_> = bit_string.split("..=").collect();
            let err_str = "bits param must be in the format \"1..=4\"";

            if nums.len() != 2 {
                return Err(Error::new(field.bits.1, err_str));
            }

            let lhs = nums[0].parse::<usize>();
            let rhs = nums[1].parse::<usize>();

            let (lhs, rhs) = match (lhs, rhs) {
                (Err(_), _) | (_, Err(_)) => return Err(Error::new(field.bits.1, err_str)),
                (Ok(lhs), Ok(rhs)) => (lhs, rhs),
            };

            Ok(quote! { (#lhs, #rhs) })
        })
        .collect();
    let field_bit_info = field_bit_info?;
    let field_bit_info_setters = &field_bit_info;
    let field_bit_info_getters = &field_bit_info;

    // TODO: Method visibility determined by struct field visibility?
    let q = quote! {
        #[automatically_derived]
        impl #struct_ident {
            #(
                /// This method allows you to write to a bitfield with a value
                pub fn #method_name_setters(&mut self, int: #field_types_setter_arg) {
                    use c2rust_bitfields::FieldType;

                    let field = &mut self.#field_names_setters;
                    let (lhs_bit, rhs_bit) = #field_bit_info_setters;
                    int.set_field(field, (lhs_bit, rhs_bit));
                }

                /// This method allows you to read from a bitfield to a value
                pub fn #method_names(&self) -> #field_types_return {
                    use c2rust_bitfields::FieldType;

                    type IntType = #field_types_typedef;

                    let field = &self.#field_names_getters;
                    let (lhs_bit, rhs_bit) = #field_bit_info_getters;
                    <IntType as FieldType>::get_field(field, (lhs_bit, rhs_bit))
                }
            )*
        }
    };

    Ok(q.into())
}