bytes/bytes_mut.rs
1use core::mem::{self, ManuallyDrop, MaybeUninit};
2use core::ops::{Deref, DerefMut};
3use core::ptr::{self, NonNull};
4use core::{cmp, fmt, hash, slice};
5
6use alloc::{
7 borrow::{Borrow, BorrowMut},
8 boxed::Box,
9 string::String,
10 vec,
11 vec::Vec,
12};
13
14use crate::buf::{IntoIter, UninitSlice};
15use crate::bytes::Vtable;
16#[allow(unused)]
17use crate::loom::sync::atomic::AtomicMut;
18use crate::loom::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
19use crate::{Buf, BufMut, Bytes, TryGetError};
20
21/// A unique reference to a contiguous slice of memory.
22///
23/// `BytesMut` represents a unique view into a potentially shared memory region.
24/// Given the uniqueness guarantee, owners of `BytesMut` handles are able to
25/// mutate the memory.
26///
27/// `BytesMut` can be thought of as containing a `buf: Arc<Vec<u8>>`, an offset
28/// into `buf`, a slice length, and a guarantee that no other `BytesMut` for the
29/// same `buf` overlaps with its slice. That guarantee means that a write lock
30/// is not required.
31///
32/// # Growth
33///
34/// `BytesMut`'s `BufMut` implementation will implicitly grow its buffer as
35/// necessary. However, explicitly reserving the required space up-front before
36/// a series of inserts will be more efficient.
37///
38/// # Examples
39///
40/// ```
41/// use bytes::{BytesMut, BufMut};
42///
43/// let mut buf = BytesMut::with_capacity(64);
44///
45/// buf.put_u8(b'h');
46/// buf.put_u8(b'e');
47/// buf.put(&b"llo"[..]);
48///
49/// assert_eq!(&buf[..], b"hello");
50///
51/// // Freeze the buffer so that it can be shared
52/// let a = buf.freeze();
53///
54/// // This does not allocate, instead `b` points to the same memory.
55/// let b = a.clone();
56///
57/// assert_eq!(&a[..], b"hello");
58/// assert_eq!(&b[..], b"hello");
59/// ```
60pub struct BytesMut {
61 ptr: NonNull<u8>,
62 len: usize,
63 cap: usize,
64 data: *mut Shared,
65}
66
67// Thread-safe reference-counted container for the shared storage. This mostly
68// the same as `core::sync::Arc` but without the weak counter. The ref counting
69// fns are based on the ones found in `std`.
70//
71// The main reason to use `Shared` instead of `core::sync::Arc` is that it ends
72// up making the overall code simpler and easier to reason about. This is due to
73// some of the logic around setting `Inner::arc` and other ways the `arc` field
74// is used. Using `Arc` ended up requiring a number of funky transmutes and
75// other shenanigans to make it work.
76struct Shared {
77 vec: Vec<u8>,
78 original_capacity_repr: usize,
79 ref_count: AtomicUsize,
80}
81
82// Assert that the alignment of `Shared` is divisible by 2.
83// This is a necessary invariant since we depend on allocating `Shared` a
84// shared object to implicitly carry the `KIND_ARC` flag in its pointer.
85// This flag is set when the LSB is 0.
86const _: [(); 0 - mem::align_of::<Shared>() % 2] = []; // Assert that the alignment of `Shared` is divisible by 2.
87
88// Buffer storage strategy flags.
89const KIND_ARC: usize = 0b0;
90const KIND_VEC: usize = 0b1;
91const KIND_MASK: usize = 0b1;
92
93// The max original capacity value. Any `Bytes` allocated with a greater initial
94// capacity will default to this.
95const MAX_ORIGINAL_CAPACITY_WIDTH: usize = 17;
96// The original capacity algorithm will not take effect unless the originally
97// allocated capacity was at least 1kb in size.
98const MIN_ORIGINAL_CAPACITY_WIDTH: usize = 10;
99// The original capacity is stored in powers of 2 starting at 1kb to a max of
100// 64kb. Representing it as such requires only 3 bits of storage.
101const ORIGINAL_CAPACITY_MASK: usize = 0b11100;
102const ORIGINAL_CAPACITY_OFFSET: usize = 2;
103
104const VEC_POS_OFFSET: usize = 5;
105// When the storage is in the `Vec` representation, the pointer can be advanced
106// at most this value. This is due to the amount of storage available to track
107// the offset is usize - number of KIND bits and number of ORIGINAL_CAPACITY
108// bits.
109const MAX_VEC_POS: usize = usize::MAX >> VEC_POS_OFFSET;
110const NOT_VEC_POS_MASK: usize = 0b11111;
111
112#[cfg(target_pointer_width = "64")]
113const PTR_WIDTH: usize = 64;
114#[cfg(target_pointer_width = "32")]
115const PTR_WIDTH: usize = 32;
116
117/*
118 *
119 * ===== BytesMut =====
120 *
121 */
122
123impl BytesMut {
124 /// Creates a new `BytesMut` with the specified capacity.
125 ///
126 /// The returned `BytesMut` will be able to hold at least `capacity` bytes
127 /// without reallocating.
128 ///
129 /// It is important to note that this function does not specify the length
130 /// of the returned `BytesMut`, but only the capacity.
131 ///
132 /// # Examples
133 ///
134 /// ```
135 /// use bytes::{BytesMut, BufMut};
136 ///
137 /// let mut bytes = BytesMut::with_capacity(64);
138 ///
139 /// // `bytes` contains no data, even though there is capacity
140 /// assert_eq!(bytes.len(), 0);
141 ///
142 /// bytes.put(&b"hello world"[..]);
143 ///
144 /// assert_eq!(&bytes[..], b"hello world");
145 /// ```
146 #[inline]
147 pub fn with_capacity(capacity: usize) -> BytesMut {
148 BytesMut::from_vec(Vec::with_capacity(capacity))
149 }
150
151 /// Creates a new `BytesMut` with default capacity.
152 ///
153 /// Resulting object has length 0 and unspecified capacity.
154 /// This function does not allocate.
155 ///
156 /// # Examples
157 ///
158 /// ```
159 /// use bytes::{BytesMut, BufMut};
160 ///
161 /// let mut bytes = BytesMut::new();
162 ///
163 /// assert_eq!(0, bytes.len());
164 ///
165 /// bytes.reserve(2);
166 /// bytes.put_slice(b"xy");
167 ///
168 /// assert_eq!(&b"xy"[..], &bytes[..]);
169 /// ```
170 #[inline]
171 pub fn new() -> BytesMut {
172 BytesMut::with_capacity(0)
173 }
174
175 /// Returns the number of bytes contained in this `BytesMut`.
176 ///
177 /// # Examples
178 ///
179 /// ```
180 /// use bytes::BytesMut;
181 ///
182 /// let b = BytesMut::from(&b"hello"[..]);
183 /// assert_eq!(b.len(), 5);
184 /// ```
185 #[inline]
186 pub fn len(&self) -> usize {
187 self.len
188 }
189
190 /// Returns true if the `BytesMut` has a length of 0.
191 ///
192 /// # Examples
193 ///
194 /// ```
195 /// use bytes::BytesMut;
196 ///
197 /// let b = BytesMut::with_capacity(64);
198 /// assert!(b.is_empty());
199 /// ```
200 #[inline]
201 pub fn is_empty(&self) -> bool {
202 self.len == 0
203 }
204
205 /// Returns the number of bytes the `BytesMut` can hold without reallocating.
206 ///
207 /// # Examples
208 ///
209 /// ```
210 /// use bytes::BytesMut;
211 ///
212 /// let b = BytesMut::with_capacity(64);
213 /// assert_eq!(b.capacity(), 64);
214 /// ```
215 #[inline]
216 pub fn capacity(&self) -> usize {
217 self.cap
218 }
219
220 /// Converts `self` into an immutable `Bytes`.
221 ///
222 /// The conversion is zero cost and is used to indicate that the slice
223 /// referenced by the handle will no longer be mutated. Once the conversion
224 /// is done, the handle can be cloned and shared across threads.
225 ///
226 /// # Examples
227 ///
228 /// ```ignore-wasm
229 /// use bytes::{BytesMut, BufMut};
230 /// use std::thread;
231 ///
232 /// let mut b = BytesMut::with_capacity(64);
233 /// b.put(&b"hello world"[..]);
234 /// let b1 = b.freeze();
235 /// let b2 = b1.clone();
236 ///
237 /// let th = thread::spawn(move || {
238 /// assert_eq!(&b1[..], b"hello world");
239 /// });
240 ///
241 /// assert_eq!(&b2[..], b"hello world");
242 /// th.join().unwrap();
243 /// ```
244 #[inline]
245 pub fn freeze(self) -> Bytes {
246 let bytes = ManuallyDrop::new(self);
247 if bytes.kind() == KIND_VEC {
248 // Just re-use `Bytes` internal Vec vtable
249 unsafe {
250 let off = bytes.get_vec_pos();
251 let vec = rebuild_vec(bytes.ptr.as_ptr(), bytes.len, bytes.cap, off);
252 let mut b: Bytes = vec.into();
253 b.advance(off);
254 b
255 }
256 } else {
257 debug_assert_eq!(bytes.kind(), KIND_ARC);
258
259 let ptr = bytes.ptr.as_ptr();
260 let len = bytes.len;
261 let data = AtomicPtr::new(bytes.data.cast());
262 unsafe { Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE) }
263 }
264 }
265
266 /// Creates a new `BytesMut` containing `len` zeros.
267 ///
268 /// The resulting object has a length of `len` and a capacity greater
269 /// than or equal to `len`. The entire length of the object will be filled
270 /// with zeros.
271 ///
272 /// On some platforms or allocators this function may be faster than
273 /// a manual implementation.
274 ///
275 /// # Examples
276 ///
277 /// ```
278 /// use bytes::BytesMut;
279 ///
280 /// let zeros = BytesMut::zeroed(42);
281 ///
282 /// assert!(zeros.capacity() >= 42);
283 /// assert_eq!(zeros.len(), 42);
284 /// zeros.into_iter().for_each(|x| assert_eq!(x, 0));
285 /// ```
286 pub fn zeroed(len: usize) -> BytesMut {
287 BytesMut::from_vec(vec![0; len])
288 }
289
290 /// Splits the bytes into two at the given index.
291 ///
292 /// Afterwards `self` contains elements `[0, at)`, and the returned
293 /// `BytesMut` contains elements `[at, capacity)`. It's guaranteed that the
294 /// memory does not move, that is, the address of `self` does not change,
295 /// and the address of the returned slice is `at` bytes after that.
296 ///
297 /// This is an `O(1)` operation that just increases the reference count
298 /// and sets a few indices.
299 ///
300 /// # Examples
301 ///
302 /// ```
303 /// use bytes::BytesMut;
304 ///
305 /// let mut a = BytesMut::from(&b"hello world"[..]);
306 /// let mut b = a.split_off(5);
307 ///
308 /// a[0] = b'j';
309 /// b[0] = b'!';
310 ///
311 /// assert_eq!(&a[..], b"jello");
312 /// assert_eq!(&b[..], b"!world");
313 /// ```
314 ///
315 /// # Panics
316 ///
317 /// Panics if `at > capacity`.
318 #[must_use = "consider BytesMut::truncate if you don't need the other half"]
319 pub fn split_off(&mut self, at: usize) -> BytesMut {
320 assert!(
321 at <= self.capacity(),
322 "split_off out of bounds: {:?} <= {:?}",
323 at,
324 self.capacity(),
325 );
326 unsafe {
327 let mut other = self.shallow_clone();
328 // SAFETY: We've checked that `at` <= `self.capacity()` above.
329 other.advance_unchecked(at);
330 self.cap = at;
331 self.len = cmp::min(self.len, at);
332 other
333 }
334 }
335
336 /// Removes the bytes from the current view, returning them in a new
337 /// `BytesMut` handle.
338 ///
339 /// Afterwards, `self` will be empty, but will retain any additional
340 /// capacity that it had before the operation. This is identical to
341 /// `self.split_to(self.len())`.
342 ///
343 /// This is an `O(1)` operation that just increases the reference count and
344 /// sets a few indices.
345 ///
346 /// # Examples
347 ///
348 /// ```
349 /// use bytes::{BytesMut, BufMut};
350 ///
351 /// let mut buf = BytesMut::with_capacity(1024);
352 /// buf.put(&b"hello world"[..]);
353 ///
354 /// let other = buf.split();
355 ///
356 /// assert!(buf.is_empty());
357 /// assert_eq!(1013, buf.capacity());
358 ///
359 /// assert_eq!(other, b"hello world"[..]);
360 /// ```
361 #[must_use = "consider BytesMut::clear if you don't need the other half"]
362 pub fn split(&mut self) -> BytesMut {
363 let len = self.len();
364 self.split_to(len)
365 }
366
367 /// Splits the buffer into two at the given index.
368 ///
369 /// Afterwards `self` contains elements `[at, len)`, and the returned `BytesMut`
370 /// contains elements `[0, at)`.
371 ///
372 /// This is an `O(1)` operation that just increases the reference count and
373 /// sets a few indices.
374 ///
375 /// # Examples
376 ///
377 /// ```
378 /// use bytes::BytesMut;
379 ///
380 /// let mut a = BytesMut::from(&b"hello world"[..]);
381 /// let mut b = a.split_to(5);
382 ///
383 /// a[0] = b'!';
384 /// b[0] = b'j';
385 ///
386 /// assert_eq!(&a[..], b"!world");
387 /// assert_eq!(&b[..], b"jello");
388 /// ```
389 ///
390 /// # Panics
391 ///
392 /// Panics if `at > len`.
393 #[must_use = "consider BytesMut::advance if you don't need the other half"]
394 pub fn split_to(&mut self, at: usize) -> BytesMut {
395 assert!(
396 at <= self.len(),
397 "split_to out of bounds: {:?} <= {:?}",
398 at,
399 self.len(),
400 );
401
402 unsafe {
403 let mut other = self.shallow_clone();
404 // SAFETY: We've checked that `at` <= `self.len()` and we know that `self.len()` <=
405 // `self.capacity()`.
406 self.advance_unchecked(at);
407 other.cap = at;
408 other.len = at;
409 other
410 }
411 }
412
413 /// Shortens the buffer, keeping the first `len` bytes and dropping the
414 /// rest.
415 ///
416 /// If `len` is greater than the buffer's current length, this has no
417 /// effect.
418 ///
419 /// Existing underlying capacity is preserved.
420 ///
421 /// The [split_off](`Self::split_off()`) method can emulate `truncate`, but this causes the
422 /// excess bytes to be returned instead of dropped.
423 ///
424 /// # Examples
425 ///
426 /// ```
427 /// use bytes::BytesMut;
428 ///
429 /// let mut buf = BytesMut::from(&b"hello world"[..]);
430 /// buf.truncate(5);
431 /// assert_eq!(buf, b"hello"[..]);
432 /// ```
433 pub fn truncate(&mut self, len: usize) {
434 if len <= self.len() {
435 // SAFETY: Shrinking the buffer cannot expose uninitialized bytes.
436 unsafe { self.set_len(len) };
437 }
438 }
439
440 /// Clears the buffer, removing all data. Existing capacity is preserved.
441 ///
442 /// # Examples
443 ///
444 /// ```
445 /// use bytes::BytesMut;
446 ///
447 /// let mut buf = BytesMut::from(&b"hello world"[..]);
448 /// buf.clear();
449 /// assert!(buf.is_empty());
450 /// ```
451 pub fn clear(&mut self) {
452 // SAFETY: Setting the length to zero cannot expose uninitialized bytes.
453 unsafe { self.set_len(0) };
454 }
455
456 /// Resizes the buffer so that `len` is equal to `new_len`.
457 ///
458 /// If `new_len` is greater than `len`, the buffer is extended by the
459 /// difference with each additional byte set to `value`. If `new_len` is
460 /// less than `len`, the buffer is simply truncated.
461 ///
462 /// # Examples
463 ///
464 /// ```
465 /// use bytes::BytesMut;
466 ///
467 /// let mut buf = BytesMut::new();
468 ///
469 /// buf.resize(3, 0x1);
470 /// assert_eq!(&buf[..], &[0x1, 0x1, 0x1]);
471 ///
472 /// buf.resize(2, 0x2);
473 /// assert_eq!(&buf[..], &[0x1, 0x1]);
474 ///
475 /// buf.resize(4, 0x3);
476 /// assert_eq!(&buf[..], &[0x1, 0x1, 0x3, 0x3]);
477 /// ```
478 pub fn resize(&mut self, new_len: usize, value: u8) {
479 let additional = if let Some(additional) = new_len.checked_sub(self.len()) {
480 additional
481 } else {
482 self.truncate(new_len);
483 return;
484 };
485
486 if additional == 0 {
487 return;
488 }
489
490 self.reserve(additional);
491 let dst = self.spare_capacity_mut().as_mut_ptr();
492 // SAFETY: `spare_capacity_mut` returns a valid, properly aligned pointer and we've
493 // reserved enough space to write `additional` bytes.
494 unsafe { ptr::write_bytes(dst, value, additional) };
495
496 // SAFETY: There are at least `new_len` initialized bytes in the buffer so no
497 // uninitialized bytes are being exposed.
498 unsafe { self.set_len(new_len) };
499 }
500
501 /// Sets the length of the buffer.
502 ///
503 /// This will explicitly set the size of the buffer without actually
504 /// modifying the data, so it is up to the caller to ensure that the data
505 /// has been initialized.
506 ///
507 /// # Examples
508 ///
509 /// ```
510 /// use bytes::BytesMut;
511 ///
512 /// let mut b = BytesMut::from(&b"hello world"[..]);
513 ///
514 /// unsafe {
515 /// b.set_len(5);
516 /// }
517 ///
518 /// assert_eq!(&b[..], b"hello");
519 ///
520 /// unsafe {
521 /// b.set_len(11);
522 /// }
523 ///
524 /// assert_eq!(&b[..], b"hello world");
525 /// ```
526 #[inline]
527 pub unsafe fn set_len(&mut self, len: usize) {
528 debug_assert!(len <= self.cap, "set_len out of bounds");
529 self.len = len;
530 }
531
532 /// Reserves capacity for at least `additional` more bytes to be inserted
533 /// into the given `BytesMut`.
534 ///
535 /// More than `additional` bytes may be reserved in order to avoid frequent
536 /// reallocations. A call to `reserve` may result in an allocation.
537 ///
538 /// Before allocating new buffer space, the function will attempt to reclaim
539 /// space in the existing buffer. If the current handle references a view
540 /// into a larger original buffer, and all other handles referencing part
541 /// of the same original buffer have been dropped, then the current view
542 /// can be copied/shifted to the front of the buffer and the handle can take
543 /// ownership of the full buffer, provided that the full buffer is large
544 /// enough to fit the requested additional capacity.
545 ///
546 /// This optimization will only happen if shifting the data from the current
547 /// view to the front of the buffer is not too expensive in terms of the
548 /// (amortized) time required. The precise condition is subject to change;
549 /// as of now, the length of the data being shifted needs to be at least as
550 /// large as the distance that it's shifted by. If the current view is empty
551 /// and the original buffer is large enough to fit the requested additional
552 /// capacity, then reallocations will never happen.
553 ///
554 /// # Examples
555 ///
556 /// In the following example, a new buffer is allocated.
557 ///
558 /// ```
559 /// use bytes::BytesMut;
560 ///
561 /// let mut buf = BytesMut::from(&b"hello"[..]);
562 /// buf.reserve(64);
563 /// assert!(buf.capacity() >= 69);
564 /// ```
565 ///
566 /// In the following example, the existing buffer is reclaimed.
567 ///
568 /// ```
569 /// use bytes::{BytesMut, BufMut};
570 ///
571 /// let mut buf = BytesMut::with_capacity(128);
572 /// buf.put(&[0; 64][..]);
573 ///
574 /// let ptr = buf.as_ptr();
575 /// let other = buf.split();
576 ///
577 /// assert!(buf.is_empty());
578 /// assert_eq!(buf.capacity(), 64);
579 ///
580 /// drop(other);
581 /// buf.reserve(128);
582 ///
583 /// assert_eq!(buf.capacity(), 128);
584 /// assert_eq!(buf.as_ptr(), ptr);
585 /// ```
586 ///
587 /// # Panics
588 ///
589 /// Panics if the new capacity overflows `usize`.
590 #[inline]
591 pub fn reserve(&mut self, additional: usize) {
592 let len = self.len();
593 let rem = self.capacity() - len;
594
595 if additional <= rem {
596 // The handle can already store at least `additional` more bytes, so
597 // there is no further work needed to be done.
598 return;
599 }
600
601 // will always succeed
602 let _ = self.reserve_inner(additional, true);
603 }
604
605 // In separate function to allow the short-circuits in `reserve` and `try_reclaim` to
606 // be inline-able. Significantly helps performance. Returns false if it did not succeed.
607 fn reserve_inner(&mut self, additional: usize, allocate: bool) -> bool {
608 let len = self.len();
609 let kind = self.kind();
610
611 if kind == KIND_VEC {
612 // If there's enough free space before the start of the buffer, then
613 // just copy the data backwards and reuse the already-allocated
614 // space.
615 //
616 // Otherwise, since backed by a vector, use `Vec::reserve`
617 //
618 // We need to make sure that this optimization does not kill the
619 // amortized runtimes of BytesMut's operations.
620 unsafe {
621 let off = self.get_vec_pos();
622
623 // Only reuse space if we can satisfy the requested additional space.
624 //
625 // Also check if the value of `off` suggests that enough bytes
626 // have been read to account for the overhead of shifting all
627 // the data (in an amortized analysis).
628 // Hence the condition `off >= self.len()`.
629 //
630 // This condition also already implies that the buffer is going
631 // to be (at least) half-empty in the end; so we do not break
632 // the (amortized) runtime with future resizes of the underlying
633 // `Vec`.
634 //
635 // [For more details check issue #524, and PR #525.]
636 if self.capacity() - self.len() + off >= additional && off >= self.len() {
637 // There's enough space, and it's not too much overhead:
638 // reuse the space!
639 //
640 // Just move the pointer back to the start after copying
641 // data back.
642 let base_ptr = self.ptr.as_ptr().sub(off);
643 // Since `off >= self.len()`, the two regions don't overlap.
644 ptr::copy_nonoverlapping(self.ptr.as_ptr(), base_ptr, self.len);
645 self.ptr = vptr(base_ptr);
646 self.set_vec_pos(0);
647
648 // Length stays constant, but since we moved backwards we
649 // can gain capacity back.
650 self.cap += off;
651 } else {
652 if !allocate {
653 return false;
654 }
655 // Not enough space, or reusing might be too much overhead:
656 // allocate more space!
657 let mut v =
658 ManuallyDrop::new(rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off));
659 v.reserve(additional);
660
661 // Update the info
662 self.ptr = vptr(v.as_mut_ptr().add(off));
663 self.cap = v.capacity() - off;
664 debug_assert_eq!(self.len, v.len() - off);
665 }
666
667 return true;
668 }
669 }
670
671 debug_assert_eq!(kind, KIND_ARC);
672 let shared: *mut Shared = self.data;
673
674 // Reserving involves abandoning the currently shared buffer and
675 // allocating a new vector with the requested capacity.
676 //
677 // Compute the new capacity
678 let mut new_cap = match len.checked_add(additional) {
679 Some(new_cap) => new_cap,
680 None if !allocate => return false,
681 None => panic!("overflow"),
682 };
683
684 unsafe {
685 // First, try to reclaim the buffer. This is possible if the current
686 // handle is the only outstanding handle pointing to the buffer.
687 if (*shared).is_unique() {
688 // This is the only handle to the buffer. It can be reclaimed.
689 // However, before doing the work of copying data, check to make
690 // sure that the vector has enough capacity.
691 let v = &mut (*shared).vec;
692
693 let v_capacity = v.capacity();
694 let ptr = v.as_mut_ptr();
695
696 let offset = self.ptr.as_ptr().offset_from(ptr) as usize;
697
698 // Compare the condition in the `kind == KIND_VEC` case above
699 // for more details.
700 if v_capacity >= new_cap + offset {
701 self.cap = new_cap;
702 // no copy is necessary
703 } else if v_capacity >= new_cap && offset >= len {
704 // The capacity is sufficient, and copying is not too much
705 // overhead: reclaim the buffer!
706
707 // `offset >= len` means: no overlap
708 ptr::copy_nonoverlapping(self.ptr.as_ptr(), ptr, len);
709
710 self.ptr = vptr(ptr);
711 self.cap = v.capacity();
712 } else {
713 if !allocate {
714 return false;
715 }
716 // calculate offset
717 let off = (self.ptr.as_ptr() as usize) - (v.as_ptr() as usize);
718
719 // new_cap is calculated in terms of `BytesMut`, not the underlying
720 // `Vec`, so it does not take the offset into account.
721 //
722 // Thus we have to manually add it here.
723 new_cap = new_cap.checked_add(off).expect("overflow");
724
725 // The vector capacity is not sufficient. The reserve request is
726 // asking for more than the initial buffer capacity. Allocate more
727 // than requested if `new_cap` is not much bigger than the current
728 // capacity.
729 //
730 // There are some situations, using `reserve_exact` that the
731 // buffer capacity could be below `original_capacity`, so do a
732 // check.
733 let double = v.capacity().checked_shl(1).unwrap_or(new_cap);
734
735 new_cap = cmp::max(double, new_cap);
736
737 // No space - allocate more
738 //
739 // The length field of `Shared::vec` is not used by the `BytesMut`;
740 // instead we use the `len` field in the `BytesMut` itself. However,
741 // when calling `reserve`, it doesn't guarantee that data stored in
742 // the unused capacity of the vector is copied over to the new
743 // allocation, so we need to ensure that we don't have any data we
744 // care about in the unused capacity before calling `reserve`.
745 debug_assert!(off + len <= v.capacity());
746 v.set_len(off + len);
747 v.reserve(new_cap - v.len());
748
749 // Update the info
750 self.ptr = vptr(v.as_mut_ptr().add(off));
751 self.cap = v.capacity() - off;
752 }
753
754 return true;
755 }
756 }
757 if !allocate {
758 return false;
759 }
760
761 let original_capacity_repr = unsafe { (*shared).original_capacity_repr };
762 let original_capacity = original_capacity_from_repr(original_capacity_repr);
763
764 new_cap = cmp::max(new_cap, original_capacity);
765
766 // Create a new vector to store the data
767 let mut v = ManuallyDrop::new(Vec::with_capacity(new_cap));
768
769 // Copy the bytes
770 v.extend_from_slice(self.as_ref());
771
772 // Release the shared handle. This must be done *after* the bytes are
773 // copied.
774 unsafe { release_shared(shared) };
775
776 // Update self
777 let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
778 self.data = invalid_ptr(data);
779 self.ptr = vptr(v.as_mut_ptr());
780 self.cap = v.capacity();
781 debug_assert_eq!(self.len, v.len());
782 true
783 }
784
785 /// Attempts to cheaply reclaim already allocated capacity for at least `additional` more
786 /// bytes to be inserted into the given `BytesMut` and returns `true` if it succeeded.
787 ///
788 /// `try_reclaim` behaves exactly like `reserve`, except that it never allocates new storage
789 /// and returns a `bool` indicating whether it was successful in doing so:
790 ///
791 /// `try_reclaim` returns false under these conditions:
792 /// - The spare capacity left is less than `additional` bytes AND
793 /// - The existing allocation cannot be reclaimed cheaply or it was less than
794 /// `additional` bytes in size
795 ///
796 /// Reclaiming the allocation cheaply is possible if the `BytesMut` has no outstanding
797 /// references through other `BytesMut`s or `Bytes` which point to the same underlying
798 /// storage.
799 ///
800 /// # Examples
801 ///
802 /// ```
803 /// use bytes::BytesMut;
804 ///
805 /// let mut buf = BytesMut::with_capacity(64);
806 /// assert_eq!(true, buf.try_reclaim(64));
807 /// assert_eq!(64, buf.capacity());
808 ///
809 /// buf.extend_from_slice(b"abcd");
810 /// let mut split = buf.split();
811 /// assert_eq!(60, buf.capacity());
812 /// assert_eq!(4, split.capacity());
813 /// assert_eq!(false, split.try_reclaim(64));
814 /// assert_eq!(false, buf.try_reclaim(64));
815 /// // The split buffer is filled with "abcd"
816 /// assert_eq!(false, split.try_reclaim(4));
817 /// // buf is empty and has capacity for 60 bytes
818 /// assert_eq!(true, buf.try_reclaim(60));
819 ///
820 /// drop(buf);
821 /// assert_eq!(false, split.try_reclaim(64));
822 ///
823 /// split.clear();
824 /// assert_eq!(4, split.capacity());
825 /// assert_eq!(true, split.try_reclaim(64));
826 /// assert_eq!(64, split.capacity());
827 /// ```
828 // I tried splitting out try_reclaim_inner after the short circuits, but it was inlined
829 // regardless with Rust 1.78.0 so probably not worth it
830 #[inline]
831 #[must_use = "consider BytesMut::reserve if you need an infallible reservation"]
832 pub fn try_reclaim(&mut self, additional: usize) -> bool {
833 let len = self.len();
834 let rem = self.capacity() - len;
835
836 if additional <= rem {
837 // The handle can already store at least `additional` more bytes, so
838 // there is no further work needed to be done.
839 return true;
840 }
841
842 self.reserve_inner(additional, false)
843 }
844
845 /// Appends given bytes to this `BytesMut`.
846 ///
847 /// If this `BytesMut` object does not have enough capacity, it is resized
848 /// first.
849 ///
850 /// # Examples
851 ///
852 /// ```
853 /// use bytes::BytesMut;
854 ///
855 /// let mut buf = BytesMut::with_capacity(0);
856 /// buf.extend_from_slice(b"aaabbb");
857 /// buf.extend_from_slice(b"cccddd");
858 ///
859 /// assert_eq!(b"aaabbbcccddd", &buf[..]);
860 /// ```
861 #[inline]
862 pub fn extend_from_slice(&mut self, extend: &[u8]) {
863 let cnt = extend.len();
864 self.reserve(cnt);
865
866 unsafe {
867 let dst = self.spare_capacity_mut();
868 // Reserved above
869 debug_assert!(dst.len() >= cnt);
870
871 ptr::copy_nonoverlapping(extend.as_ptr(), dst.as_mut_ptr().cast(), cnt);
872 }
873
874 unsafe {
875 self.advance_mut(cnt);
876 }
877 }
878
879 /// Absorbs a `BytesMut` that was previously split off.
880 ///
881 /// If the two `BytesMut` objects were previously contiguous and not mutated
882 /// in a way that causes re-allocation i.e., if `other` was created by
883 /// calling `split_off` on this `BytesMut`, then this is an `O(1)` operation
884 /// that just decreases a reference count and sets a few indices.
885 /// Otherwise this method degenerates to
886 /// `self.extend_from_slice(other.as_ref())`.
887 ///
888 /// # Examples
889 ///
890 /// ```
891 /// use bytes::BytesMut;
892 ///
893 /// let mut buf = BytesMut::with_capacity(64);
894 /// buf.extend_from_slice(b"aaabbbcccddd");
895 ///
896 /// let split = buf.split_off(6);
897 /// assert_eq!(b"aaabbb", &buf[..]);
898 /// assert_eq!(b"cccddd", &split[..]);
899 ///
900 /// buf.unsplit(split);
901 /// assert_eq!(b"aaabbbcccddd", &buf[..]);
902 /// ```
903 pub fn unsplit(&mut self, other: BytesMut) {
904 if self.is_empty() {
905 *self = other;
906 return;
907 }
908
909 if let Err(other) = self.try_unsplit(other) {
910 self.extend_from_slice(other.as_ref());
911 }
912 }
913
914 // private
915
916 // For now, use a `Vec` to manage the memory for us, but we may want to
917 // change that in the future to some alternate allocator strategy.
918 //
919 // Thus, we don't expose an easy way to construct from a `Vec` since an
920 // internal change could make a simple pattern (`BytesMut::from(vec)`)
921 // suddenly a lot more expensive.
922 #[inline]
923 pub(crate) fn from_vec(vec: Vec<u8>) -> BytesMut {
924 let mut vec = ManuallyDrop::new(vec);
925 let ptr = vptr(vec.as_mut_ptr());
926 let len = vec.len();
927 let cap = vec.capacity();
928
929 let original_capacity_repr = original_capacity_to_repr(cap);
930 let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
931
932 BytesMut {
933 ptr,
934 len,
935 cap,
936 data: invalid_ptr(data),
937 }
938 }
939
940 #[inline]
941 fn as_slice(&self) -> &[u8] {
942 unsafe { slice::from_raw_parts(self.ptr.as_ptr(), self.len) }
943 }
944
945 #[inline]
946 fn as_slice_mut(&mut self) -> &mut [u8] {
947 unsafe { slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len) }
948 }
949
950 /// Advance the buffer without bounds checking.
951 ///
952 /// # SAFETY
953 ///
954 /// The caller must ensure that `count` <= `self.cap`.
955 pub(crate) unsafe fn advance_unchecked(&mut self, count: usize) {
956 // Setting the start to 0 is a no-op, so return early if this is the
957 // case.
958 if count == 0 {
959 return;
960 }
961
962 debug_assert!(count <= self.cap, "internal: set_start out of bounds");
963
964 let kind = self.kind();
965
966 if kind == KIND_VEC {
967 // Setting the start when in vec representation is a little more
968 // complicated. First, we have to track how far ahead the
969 // "start" of the byte buffer from the beginning of the vec. We
970 // also have to ensure that we don't exceed the maximum shift.
971 let pos = self.get_vec_pos() + count;
972
973 if pos <= MAX_VEC_POS {
974 self.set_vec_pos(pos);
975 } else {
976 // The repr must be upgraded to ARC. This will never happen
977 // on 64 bit systems and will only happen on 32 bit systems
978 // when shifting past 134,217,727 bytes. As such, we don't
979 // worry too much about performance here.
980 self.promote_to_shared(/*ref_count = */ 1);
981 }
982 }
983
984 // Updating the start of the view is setting `ptr` to point to the
985 // new start and updating the `len` field to reflect the new length
986 // of the view.
987 self.ptr = vptr(self.ptr.as_ptr().add(count));
988 self.len = self.len.saturating_sub(count);
989 self.cap -= count;
990 }
991
992 fn try_unsplit(&mut self, other: BytesMut) -> Result<(), BytesMut> {
993 if other.capacity() == 0 {
994 return Ok(());
995 }
996
997 let ptr = unsafe { self.ptr.as_ptr().add(self.len) };
998 if ptr == other.ptr.as_ptr()
999 && self.kind() == KIND_ARC
1000 && other.kind() == KIND_ARC
1001 && self.data == other.data
1002 {
1003 // Contiguous blocks, just combine directly
1004 self.len += other.len;
1005 self.cap += other.cap;
1006 Ok(())
1007 } else {
1008 Err(other)
1009 }
1010 }
1011
1012 #[inline]
1013 fn kind(&self) -> usize {
1014 self.data as usize & KIND_MASK
1015 }
1016
1017 unsafe fn promote_to_shared(&mut self, ref_cnt: usize) {
1018 debug_assert_eq!(self.kind(), KIND_VEC);
1019 debug_assert!(ref_cnt == 1 || ref_cnt == 2);
1020
1021 let original_capacity_repr =
1022 (self.data as usize & ORIGINAL_CAPACITY_MASK) >> ORIGINAL_CAPACITY_OFFSET;
1023
1024 // The vec offset cannot be concurrently mutated, so there
1025 // should be no danger reading it.
1026 let off = (self.data as usize) >> VEC_POS_OFFSET;
1027
1028 // First, allocate a new `Shared` instance containing the
1029 // `Vec` fields. It's important to note that `ptr`, `len`,
1030 // and `cap` cannot be mutated without having `&mut self`.
1031 // This means that these fields will not be concurrently
1032 // updated and since the buffer hasn't been promoted to an
1033 // `Arc`, those three fields still are the components of the
1034 // vector.
1035 let shared = Box::new(Shared {
1036 vec: rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off),
1037 original_capacity_repr,
1038 ref_count: AtomicUsize::new(ref_cnt),
1039 });
1040
1041 let shared = Box::into_raw(shared);
1042
1043 // The pointer should be aligned, so this assert should
1044 // always succeed.
1045 debug_assert_eq!(shared as usize & KIND_MASK, KIND_ARC);
1046
1047 self.data = shared;
1048 }
1049
1050 /// Makes an exact shallow clone of `self`.
1051 ///
1052 /// The kind of `self` doesn't matter, but this is unsafe
1053 /// because the clone will have the same offsets. You must
1054 /// be sure the returned value to the user doesn't allow
1055 /// two views into the same range.
1056 #[inline]
1057 unsafe fn shallow_clone(&mut self) -> BytesMut {
1058 if self.kind() == KIND_ARC {
1059 increment_shared(self.data);
1060 ptr::read(self)
1061 } else {
1062 self.promote_to_shared(/*ref_count = */ 2);
1063 ptr::read(self)
1064 }
1065 }
1066
1067 #[inline]
1068 unsafe fn get_vec_pos(&self) -> usize {
1069 debug_assert_eq!(self.kind(), KIND_VEC);
1070
1071 self.data as usize >> VEC_POS_OFFSET
1072 }
1073
1074 #[inline]
1075 unsafe fn set_vec_pos(&mut self, pos: usize) {
1076 debug_assert_eq!(self.kind(), KIND_VEC);
1077 debug_assert!(pos <= MAX_VEC_POS);
1078
1079 self.data = invalid_ptr((pos << VEC_POS_OFFSET) | (self.data as usize & NOT_VEC_POS_MASK));
1080 }
1081
1082 /// Returns the remaining spare capacity of the buffer as a slice of `MaybeUninit<u8>`.
1083 ///
1084 /// The returned slice can be used to fill the buffer with data (e.g. by
1085 /// reading from a file) before marking the data as initialized using the
1086 /// [`set_len`] method.
1087 ///
1088 /// [`set_len`]: BytesMut::set_len
1089 ///
1090 /// # Examples
1091 ///
1092 /// ```
1093 /// use bytes::BytesMut;
1094 ///
1095 /// // Allocate buffer big enough for 10 bytes.
1096 /// let mut buf = BytesMut::with_capacity(10);
1097 ///
1098 /// // Fill in the first 3 elements.
1099 /// let uninit = buf.spare_capacity_mut();
1100 /// uninit[0].write(0);
1101 /// uninit[1].write(1);
1102 /// uninit[2].write(2);
1103 ///
1104 /// // Mark the first 3 bytes of the buffer as being initialized.
1105 /// unsafe {
1106 /// buf.set_len(3);
1107 /// }
1108 ///
1109 /// assert_eq!(&buf[..], &[0, 1, 2]);
1110 /// ```
1111 #[inline]
1112 pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<u8>] {
1113 unsafe {
1114 let ptr = self.ptr.as_ptr().add(self.len);
1115 let len = self.cap - self.len;
1116
1117 slice::from_raw_parts_mut(ptr.cast(), len)
1118 }
1119 }
1120}
1121
1122impl Drop for BytesMut {
1123 fn drop(&mut self) {
1124 let kind = self.kind();
1125
1126 if kind == KIND_VEC {
1127 unsafe {
1128 let off = self.get_vec_pos();
1129
1130 // Vector storage, free the vector
1131 let _ = rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off);
1132 }
1133 } else if kind == KIND_ARC {
1134 unsafe { release_shared(self.data) };
1135 }
1136 }
1137}
1138
1139impl Buf for BytesMut {
1140 #[inline]
1141 fn remaining(&self) -> usize {
1142 self.len()
1143 }
1144
1145 #[inline]
1146 fn chunk(&self) -> &[u8] {
1147 self.as_slice()
1148 }
1149
1150 #[inline]
1151 fn advance(&mut self, cnt: usize) {
1152 assert!(
1153 cnt <= self.remaining(),
1154 "cannot advance past `remaining`: {:?} <= {:?}",
1155 cnt,
1156 self.remaining(),
1157 );
1158 unsafe {
1159 // SAFETY: We've checked that `cnt` <= `self.remaining()` and we know that
1160 // `self.remaining()` <= `self.cap`.
1161 self.advance_unchecked(cnt);
1162 }
1163 }
1164
1165 fn copy_to_bytes(&mut self, len: usize) -> Bytes {
1166 self.split_to(len).freeze()
1167 }
1168}
1169
1170unsafe impl BufMut for BytesMut {
1171 #[inline]
1172 fn remaining_mut(&self) -> usize {
1173 // Max allocation size is isize::MAX.
1174 isize::MAX as usize - self.len()
1175 }
1176
1177 #[inline]
1178 unsafe fn advance_mut(&mut self, cnt: usize) {
1179 let remaining = self.cap - self.len();
1180 if cnt > remaining {
1181 super::panic_advance(&TryGetError {
1182 requested: cnt,
1183 available: remaining,
1184 });
1185 }
1186 // Addition won't overflow since it is at most `self.cap`.
1187 self.len = self.len() + cnt;
1188 }
1189
1190 #[inline]
1191 fn chunk_mut(&mut self) -> &mut UninitSlice {
1192 if self.capacity() == self.len() {
1193 self.reserve(64);
1194 }
1195 self.spare_capacity_mut().into()
1196 }
1197
1198 // Specialize these methods so they can skip checking `remaining_mut`
1199 // and `advance_mut`.
1200
1201 fn put<T: Buf>(&mut self, mut src: T)
1202 where
1203 Self: Sized,
1204 {
1205 if !src.has_remaining() {
1206 // prevent calling `copy_to_bytes`->`put`->`copy_to_bytes` infintely when src is empty
1207 return;
1208 } else if self.capacity() == 0 {
1209 // When capacity is zero, try reusing allocation of `src`.
1210 let src_copy = src.copy_to_bytes(src.remaining());
1211 drop(src);
1212 match src_copy.try_into_mut() {
1213 Ok(bytes_mut) => *self = bytes_mut,
1214 Err(bytes) => self.extend_from_slice(&bytes),
1215 }
1216 } else {
1217 // In case the src isn't contiguous, reserve upfront.
1218 self.reserve(src.remaining());
1219
1220 while src.has_remaining() {
1221 let s = src.chunk();
1222 let l = s.len();
1223 self.extend_from_slice(s);
1224 src.advance(l);
1225 }
1226 }
1227 }
1228
1229 fn put_slice(&mut self, src: &[u8]) {
1230 self.extend_from_slice(src);
1231 }
1232
1233 fn put_bytes(&mut self, val: u8, cnt: usize) {
1234 self.reserve(cnt);
1235 unsafe {
1236 let dst = self.spare_capacity_mut();
1237 // Reserved above
1238 debug_assert!(dst.len() >= cnt);
1239
1240 ptr::write_bytes(dst.as_mut_ptr(), val, cnt);
1241
1242 self.advance_mut(cnt);
1243 }
1244 }
1245}
1246
1247impl AsRef<[u8]> for BytesMut {
1248 #[inline]
1249 fn as_ref(&self) -> &[u8] {
1250 self.as_slice()
1251 }
1252}
1253
1254impl Deref for BytesMut {
1255 type Target = [u8];
1256
1257 #[inline]
1258 fn deref(&self) -> &[u8] {
1259 self.as_ref()
1260 }
1261}
1262
1263impl AsMut<[u8]> for BytesMut {
1264 #[inline]
1265 fn as_mut(&mut self) -> &mut [u8] {
1266 self.as_slice_mut()
1267 }
1268}
1269
1270impl DerefMut for BytesMut {
1271 #[inline]
1272 fn deref_mut(&mut self) -> &mut [u8] {
1273 self.as_mut()
1274 }
1275}
1276
1277impl<'a> From<&'a [u8]> for BytesMut {
1278 fn from(src: &'a [u8]) -> BytesMut {
1279 BytesMut::from_vec(src.to_vec())
1280 }
1281}
1282
1283impl<'a> From<&'a str> for BytesMut {
1284 fn from(src: &'a str) -> BytesMut {
1285 BytesMut::from(src.as_bytes())
1286 }
1287}
1288
1289impl From<BytesMut> for Bytes {
1290 fn from(src: BytesMut) -> Bytes {
1291 src.freeze()
1292 }
1293}
1294
1295impl PartialEq for BytesMut {
1296 fn eq(&self, other: &BytesMut) -> bool {
1297 self.as_slice() == other.as_slice()
1298 }
1299}
1300
1301impl PartialOrd for BytesMut {
1302 fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1303 Some(self.cmp(other))
1304 }
1305}
1306
1307impl Ord for BytesMut {
1308 fn cmp(&self, other: &BytesMut) -> cmp::Ordering {
1309 self.as_slice().cmp(other.as_slice())
1310 }
1311}
1312
1313impl Eq for BytesMut {}
1314
1315impl Default for BytesMut {
1316 #[inline]
1317 fn default() -> BytesMut {
1318 BytesMut::new()
1319 }
1320}
1321
1322impl hash::Hash for BytesMut {
1323 fn hash<H>(&self, state: &mut H)
1324 where
1325 H: hash::Hasher,
1326 {
1327 let s: &[u8] = self.as_ref();
1328 s.hash(state);
1329 }
1330}
1331
1332impl Borrow<[u8]> for BytesMut {
1333 fn borrow(&self) -> &[u8] {
1334 self.as_ref()
1335 }
1336}
1337
1338impl BorrowMut<[u8]> for BytesMut {
1339 fn borrow_mut(&mut self) -> &mut [u8] {
1340 self.as_mut()
1341 }
1342}
1343
1344impl fmt::Write for BytesMut {
1345 #[inline]
1346 fn write_str(&mut self, s: &str) -> fmt::Result {
1347 if self.remaining_mut() >= s.len() {
1348 self.put_slice(s.as_bytes());
1349 Ok(())
1350 } else {
1351 Err(fmt::Error)
1352 }
1353 }
1354
1355 #[inline]
1356 fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> fmt::Result {
1357 fmt::write(self, args)
1358 }
1359}
1360
1361impl Clone for BytesMut {
1362 fn clone(&self) -> BytesMut {
1363 BytesMut::from(&self[..])
1364 }
1365}
1366
1367impl IntoIterator for BytesMut {
1368 type Item = u8;
1369 type IntoIter = IntoIter<BytesMut>;
1370
1371 fn into_iter(self) -> Self::IntoIter {
1372 IntoIter::new(self)
1373 }
1374}
1375
1376impl<'a> IntoIterator for &'a BytesMut {
1377 type Item = &'a u8;
1378 type IntoIter = core::slice::Iter<'a, u8>;
1379
1380 fn into_iter(self) -> Self::IntoIter {
1381 self.as_ref().iter()
1382 }
1383}
1384
1385impl Extend<u8> for BytesMut {
1386 fn extend<T>(&mut self, iter: T)
1387 where
1388 T: IntoIterator<Item = u8>,
1389 {
1390 let iter = iter.into_iter();
1391
1392 let (lower, _) = iter.size_hint();
1393 self.reserve(lower);
1394
1395 // TODO: optimize
1396 // 1. If self.kind() == KIND_VEC, use Vec::extend
1397 for b in iter {
1398 self.put_u8(b);
1399 }
1400 }
1401}
1402
1403impl<'a> Extend<&'a u8> for BytesMut {
1404 fn extend<T>(&mut self, iter: T)
1405 where
1406 T: IntoIterator<Item = &'a u8>,
1407 {
1408 self.extend(iter.into_iter().copied())
1409 }
1410}
1411
1412impl Extend<Bytes> for BytesMut {
1413 fn extend<T>(&mut self, iter: T)
1414 where
1415 T: IntoIterator<Item = Bytes>,
1416 {
1417 for bytes in iter {
1418 self.extend_from_slice(&bytes)
1419 }
1420 }
1421}
1422
1423impl FromIterator<u8> for BytesMut {
1424 fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
1425 BytesMut::from_vec(Vec::from_iter(into_iter))
1426 }
1427}
1428
1429impl<'a> FromIterator<&'a u8> for BytesMut {
1430 fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self {
1431 BytesMut::from_iter(into_iter.into_iter().copied())
1432 }
1433}
1434
1435/*
1436 *
1437 * ===== Inner =====
1438 *
1439 */
1440
1441unsafe fn increment_shared(ptr: *mut Shared) {
1442 let old_size = (*ptr).ref_count.fetch_add(1, Ordering::Relaxed);
1443
1444 if old_size > isize::MAX as usize {
1445 crate::abort();
1446 }
1447}
1448
1449unsafe fn release_shared(ptr: *mut Shared) {
1450 // `Shared` storage... follow the drop steps from Arc.
1451 if (*ptr).ref_count.fetch_sub(1, Ordering::Release) != 1 {
1452 return;
1453 }
1454
1455 // This fence is needed to prevent reordering of use of the data and
1456 // deletion of the data. Because it is marked `Release`, the decreasing
1457 // of the reference count synchronizes with this `Acquire` fence. This
1458 // means that use of the data happens before decreasing the reference
1459 // count, which happens before this fence, which happens before the
1460 // deletion of the data.
1461 //
1462 // As explained in the [Boost documentation][1],
1463 //
1464 // > It is important to enforce any possible access to the object in one
1465 // > thread (through an existing reference) to *happen before* deleting
1466 // > the object in a different thread. This is achieved by a "release"
1467 // > operation after dropping a reference (any access to the object
1468 // > through this reference must obviously happened before), and an
1469 // > "acquire" operation before deleting the object.
1470 //
1471 // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
1472 //
1473 // Thread sanitizer does not support atomic fences. Use an atomic load
1474 // instead.
1475 (*ptr).ref_count.load(Ordering::Acquire);
1476
1477 // Drop the data
1478 drop(Box::from_raw(ptr));
1479}
1480
1481impl Shared {
1482 fn is_unique(&self) -> bool {
1483 // The goal is to check if the current handle is the only handle
1484 // that currently has access to the buffer. This is done by
1485 // checking if the `ref_count` is currently 1.
1486 //
1487 // The `Acquire` ordering synchronizes with the `Release` as
1488 // part of the `fetch_sub` in `release_shared`. The `fetch_sub`
1489 // operation guarantees that any mutations done in other threads
1490 // are ordered before the `ref_count` is decremented. As such,
1491 // this `Acquire` will guarantee that those mutations are
1492 // visible to the current thread.
1493 self.ref_count.load(Ordering::Acquire) == 1
1494 }
1495}
1496
1497#[inline]
1498fn original_capacity_to_repr(cap: usize) -> usize {
1499 let width = PTR_WIDTH - ((cap >> MIN_ORIGINAL_CAPACITY_WIDTH).leading_zeros() as usize);
1500 cmp::min(
1501 width,
1502 MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH,
1503 )
1504}
1505
1506fn original_capacity_from_repr(repr: usize) -> usize {
1507 if repr == 0 {
1508 return 0;
1509 }
1510
1511 1 << (repr + (MIN_ORIGINAL_CAPACITY_WIDTH - 1))
1512}
1513
1514#[cfg(test)]
1515mod tests {
1516 use super::*;
1517
1518 #[test]
1519 fn test_original_capacity_to_repr() {
1520 assert_eq!(original_capacity_to_repr(0), 0);
1521
1522 let max_width = 32;
1523
1524 for width in 1..(max_width + 1) {
1525 let cap = 1 << width - 1;
1526
1527 let expected = if width < MIN_ORIGINAL_CAPACITY_WIDTH {
1528 0
1529 } else if width < MAX_ORIGINAL_CAPACITY_WIDTH {
1530 width - MIN_ORIGINAL_CAPACITY_WIDTH
1531 } else {
1532 MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH
1533 };
1534
1535 assert_eq!(original_capacity_to_repr(cap), expected);
1536
1537 if width > 1 {
1538 assert_eq!(original_capacity_to_repr(cap + 1), expected);
1539 }
1540
1541 // MIN_ORIGINAL_CAPACITY_WIDTH must be bigger than 7 to pass tests below
1542 if width == MIN_ORIGINAL_CAPACITY_WIDTH + 1 {
1543 assert_eq!(original_capacity_to_repr(cap - 24), expected - 1);
1544 assert_eq!(original_capacity_to_repr(cap + 76), expected);
1545 } else if width == MIN_ORIGINAL_CAPACITY_WIDTH + 2 {
1546 assert_eq!(original_capacity_to_repr(cap - 1), expected - 1);
1547 assert_eq!(original_capacity_to_repr(cap - 48), expected - 1);
1548 }
1549 }
1550 }
1551
1552 #[test]
1553 fn test_original_capacity_from_repr() {
1554 assert_eq!(0, original_capacity_from_repr(0));
1555
1556 let min_cap = 1 << MIN_ORIGINAL_CAPACITY_WIDTH;
1557
1558 assert_eq!(min_cap, original_capacity_from_repr(1));
1559 assert_eq!(min_cap * 2, original_capacity_from_repr(2));
1560 assert_eq!(min_cap * 4, original_capacity_from_repr(3));
1561 assert_eq!(min_cap * 8, original_capacity_from_repr(4));
1562 assert_eq!(min_cap * 16, original_capacity_from_repr(5));
1563 assert_eq!(min_cap * 32, original_capacity_from_repr(6));
1564 assert_eq!(min_cap * 64, original_capacity_from_repr(7));
1565 }
1566}
1567
1568unsafe impl Send for BytesMut {}
1569unsafe impl Sync for BytesMut {}
1570
1571/*
1572 *
1573 * ===== PartialEq / PartialOrd =====
1574 *
1575 */
1576
1577impl PartialEq<[u8]> for BytesMut {
1578 fn eq(&self, other: &[u8]) -> bool {
1579 &**self == other
1580 }
1581}
1582
1583impl PartialOrd<[u8]> for BytesMut {
1584 fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
1585 (**self).partial_cmp(other)
1586 }
1587}
1588
1589impl PartialEq<BytesMut> for [u8] {
1590 fn eq(&self, other: &BytesMut) -> bool {
1591 *other == *self
1592 }
1593}
1594
1595impl PartialOrd<BytesMut> for [u8] {
1596 fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1597 <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
1598 }
1599}
1600
1601impl PartialEq<str> for BytesMut {
1602 fn eq(&self, other: &str) -> bool {
1603 &**self == other.as_bytes()
1604 }
1605}
1606
1607impl PartialOrd<str> for BytesMut {
1608 fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
1609 (**self).partial_cmp(other.as_bytes())
1610 }
1611}
1612
1613impl PartialEq<BytesMut> for str {
1614 fn eq(&self, other: &BytesMut) -> bool {
1615 *other == *self
1616 }
1617}
1618
1619impl PartialOrd<BytesMut> for str {
1620 fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1621 <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
1622 }
1623}
1624
1625impl PartialEq<Vec<u8>> for BytesMut {
1626 fn eq(&self, other: &Vec<u8>) -> bool {
1627 *self == other[..]
1628 }
1629}
1630
1631impl PartialOrd<Vec<u8>> for BytesMut {
1632 fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
1633 (**self).partial_cmp(&other[..])
1634 }
1635}
1636
1637impl PartialEq<BytesMut> for Vec<u8> {
1638 fn eq(&self, other: &BytesMut) -> bool {
1639 *other == *self
1640 }
1641}
1642
1643impl PartialOrd<BytesMut> for Vec<u8> {
1644 fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1645 other.partial_cmp(self)
1646 }
1647}
1648
1649impl PartialEq<String> for BytesMut {
1650 fn eq(&self, other: &String) -> bool {
1651 *self == other[..]
1652 }
1653}
1654
1655impl PartialOrd<String> for BytesMut {
1656 fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
1657 (**self).partial_cmp(other.as_bytes())
1658 }
1659}
1660
1661impl PartialEq<BytesMut> for String {
1662 fn eq(&self, other: &BytesMut) -> bool {
1663 *other == *self
1664 }
1665}
1666
1667impl PartialOrd<BytesMut> for String {
1668 fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1669 <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
1670 }
1671}
1672
1673impl<'a, T: ?Sized> PartialEq<&'a T> for BytesMut
1674where
1675 BytesMut: PartialEq<T>,
1676{
1677 fn eq(&self, other: &&'a T) -> bool {
1678 *self == **other
1679 }
1680}
1681
1682impl<'a, T: ?Sized> PartialOrd<&'a T> for BytesMut
1683where
1684 BytesMut: PartialOrd<T>,
1685{
1686 fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
1687 self.partial_cmp(*other)
1688 }
1689}
1690
1691impl PartialEq<BytesMut> for &[u8] {
1692 fn eq(&self, other: &BytesMut) -> bool {
1693 *other == *self
1694 }
1695}
1696
1697impl PartialOrd<BytesMut> for &[u8] {
1698 fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1699 <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
1700 }
1701}
1702
1703impl PartialEq<BytesMut> for &str {
1704 fn eq(&self, other: &BytesMut) -> bool {
1705 *other == *self
1706 }
1707}
1708
1709impl PartialOrd<BytesMut> for &str {
1710 fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1711 other.partial_cmp(self)
1712 }
1713}
1714
1715impl PartialEq<BytesMut> for Bytes {
1716 fn eq(&self, other: &BytesMut) -> bool {
1717 other[..] == self[..]
1718 }
1719}
1720
1721impl PartialEq<Bytes> for BytesMut {
1722 fn eq(&self, other: &Bytes) -> bool {
1723 other[..] == self[..]
1724 }
1725}
1726
1727impl From<BytesMut> for Vec<u8> {
1728 fn from(bytes: BytesMut) -> Self {
1729 let kind = bytes.kind();
1730 let bytes = ManuallyDrop::new(bytes);
1731
1732 let mut vec = if kind == KIND_VEC {
1733 unsafe {
1734 let off = bytes.get_vec_pos();
1735 rebuild_vec(bytes.ptr.as_ptr(), bytes.len, bytes.cap, off)
1736 }
1737 } else {
1738 let shared = bytes.data;
1739
1740 if unsafe { (*shared).is_unique() } {
1741 let vec = core::mem::take(unsafe { &mut (*shared).vec });
1742
1743 unsafe { release_shared(shared) };
1744
1745 vec
1746 } else {
1747 return ManuallyDrop::into_inner(bytes).deref().to_vec();
1748 }
1749 };
1750
1751 let len = bytes.len;
1752
1753 unsafe {
1754 ptr::copy(bytes.ptr.as_ptr(), vec.as_mut_ptr(), len);
1755 vec.set_len(len);
1756 }
1757
1758 vec
1759 }
1760}
1761
1762#[inline]
1763fn vptr(ptr: *mut u8) -> NonNull<u8> {
1764 if cfg!(debug_assertions) {
1765 NonNull::new(ptr).expect("Vec pointer should be non-null")
1766 } else {
1767 unsafe { NonNull::new_unchecked(ptr) }
1768 }
1769}
1770
1771/// Returns a dangling pointer with the given address. This is used to store
1772/// integer data in pointer fields.
1773///
1774/// It is equivalent to `addr as *mut T`, but this fails on miri when strict
1775/// provenance checking is enabled.
1776#[inline]
1777fn invalid_ptr<T>(addr: usize) -> *mut T {
1778 let ptr = core::ptr::null_mut::<u8>().wrapping_add(addr);
1779 debug_assert_eq!(ptr as usize, addr);
1780 ptr.cast::<T>()
1781}
1782
1783unsafe fn rebuild_vec(ptr: *mut u8, mut len: usize, mut cap: usize, off: usize) -> Vec<u8> {
1784 let ptr = ptr.sub(off);
1785 len += off;
1786 cap += off;
1787
1788 Vec::from_raw_parts(ptr, len, cap)
1789}
1790
1791// ===== impl SharedVtable =====
1792
1793static SHARED_VTABLE: Vtable = Vtable {
1794 clone: shared_v_clone,
1795 into_vec: shared_v_to_vec,
1796 into_mut: shared_v_to_mut,
1797 is_unique: shared_v_is_unique,
1798 drop: shared_v_drop,
1799};
1800
1801unsafe fn shared_v_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
1802 let shared = data.load(Ordering::Relaxed) as *mut Shared;
1803 increment_shared(shared);
1804
1805 let data = AtomicPtr::new(shared as *mut ());
1806 Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE)
1807}
1808
1809unsafe fn shared_v_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> {
1810 let shared: *mut Shared = data.load(Ordering::Relaxed).cast();
1811
1812 if (*shared).is_unique() {
1813 let shared = &mut *shared;
1814
1815 // Drop shared
1816 let mut vec = core::mem::take(&mut shared.vec);
1817 release_shared(shared);
1818
1819 // Copy back buffer
1820 ptr::copy(ptr, vec.as_mut_ptr(), len);
1821 vec.set_len(len);
1822
1823 vec
1824 } else {
1825 let v = slice::from_raw_parts(ptr, len).to_vec();
1826 release_shared(shared);
1827 v
1828 }
1829}
1830
1831unsafe fn shared_v_to_mut(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> BytesMut {
1832 let shared: *mut Shared = data.load(Ordering::Relaxed).cast();
1833
1834 if (*shared).is_unique() {
1835 let shared = &mut *shared;
1836
1837 // The capacity is always the original capacity of the buffer
1838 // minus the offset from the start of the buffer
1839 let v = &mut shared.vec;
1840 let v_capacity = v.capacity();
1841 let v_ptr = v.as_mut_ptr();
1842 let offset = ptr.offset_from(v_ptr) as usize;
1843 let cap = v_capacity - offset;
1844
1845 let ptr = vptr(ptr as *mut u8);
1846
1847 BytesMut {
1848 ptr,
1849 len,
1850 cap,
1851 data: shared,
1852 }
1853 } else {
1854 let v = slice::from_raw_parts(ptr, len).to_vec();
1855 release_shared(shared);
1856 BytesMut::from_vec(v)
1857 }
1858}
1859
1860unsafe fn shared_v_is_unique(data: &AtomicPtr<()>) -> bool {
1861 let shared = data.load(Ordering::Acquire);
1862 let ref_count = (*shared.cast::<Shared>()).ref_count.load(Ordering::Relaxed);
1863 ref_count == 1
1864}
1865
1866unsafe fn shared_v_drop(data: &mut AtomicPtr<()>, _ptr: *const u8, _len: usize) {
1867 data.with_mut(|shared| {
1868 release_shared(*shared as *mut Shared);
1869 });
1870}
1871
1872// compile-fails
1873
1874/// ```compile_fail
1875/// use bytes::BytesMut;
1876/// #[deny(unused_must_use)]
1877/// {
1878/// let mut b1 = BytesMut::from("hello world");
1879/// b1.split_to(6);
1880/// }
1881/// ```
1882fn _split_to_must_use() {}
1883
1884/// ```compile_fail
1885/// use bytes::BytesMut;
1886/// #[deny(unused_must_use)]
1887/// {
1888/// let mut b1 = BytesMut::from("hello world");
1889/// b1.split_off(6);
1890/// }
1891/// ```
1892fn _split_off_must_use() {}
1893
1894/// ```compile_fail
1895/// use bytes::BytesMut;
1896/// #[deny(unused_must_use)]
1897/// {
1898/// let mut b1 = BytesMut::from("hello world");
1899/// b1.split();
1900/// }
1901/// ```
1902fn _split_must_use() {}
1903
1904// fuzz tests
1905#[cfg(all(test, loom))]
1906mod fuzz {
1907 use loom::sync::Arc;
1908 use loom::thread;
1909
1910 use super::BytesMut;
1911 use crate::Bytes;
1912
1913 #[test]
1914 fn bytes_mut_cloning_frozen() {
1915 loom::model(|| {
1916 let a = BytesMut::from(&b"abcdefgh"[..]).split().freeze();
1917 let addr = a.as_ptr() as usize;
1918
1919 // test the Bytes::clone is Sync by putting it in an Arc
1920 let a1 = Arc::new(a);
1921 let a2 = a1.clone();
1922
1923 let t1 = thread::spawn(move || {
1924 let b: Bytes = (*a1).clone();
1925 assert_eq!(b.as_ptr() as usize, addr);
1926 });
1927
1928 let t2 = thread::spawn(move || {
1929 let b: Bytes = (*a2).clone();
1930 assert_eq!(b.as_ptr() as usize, addr);
1931 });
1932
1933 t1.join().unwrap();
1934 t2.join().unwrap();
1935 });
1936 }
1937}