1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
use std::{
    fmt::Debug,
    ops::{AddAssign, Index, SubAssign},
    slice::SliceIndex,
};

use tiny_ansi::TinyAnsi;

pub struct ByteCode<'a> {
    pub(crate) inner: &'a [u8],
    pub(crate) pos: usize,
}

impl Debug for ByteCode<'_> {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        let mut result = String::new();
        let header = "         00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F".cyan();
        result.push_str(&header);
        result.push('\n');

        let current_pos = self.pos;
        let mut replica = ByteCode {
            inner: self.inner,
            pos: self.pos,
        };
        replica.reset();

        // If the amount of data is large, it may be better to use a lookup table.
        let mut content: Vec<String> = replica
            .inner
            .iter()
            .map(|byte| format!("{:02X}", byte))
            .collect();
        if let Some(byte) = content.get_mut(current_pos) {
            *byte = byte.green();
        }
        for (i, line) in content.chunks(16).map(|line| line.join(" ")).enumerate() {
            let line_number = {
                let mut line_number = "0".repeat(8);
                let hex = format!("{:02X}", i);
                line_number.replace_range((8 - hex.len() - 1)..7, &hex);
                line_number
            };
            result.push_str(&line_number);
            result.push(' ');
            result.push_str(&line);
            result.push('\n');
        }
        write!(f, "\n{}", result)
    }
}

impl<'a> ByteCode<'a> {
    /// Creates a new `ByteCode`.
    ///
    /// # Examples
    ///
    /// ```
    /// use bytecode::ByteCode;
    ///
    /// let bytes = ByteCode::new(&[0, 1, 2, 3, 4, 5, 6, 7]);
    /// ```
    pub fn new(slice: &'a [u8]) -> Self {
        ByteCode {
            inner: slice,
            pos: 0,
        }
    }

    /// Extracts a current remaining slice.
    ///
    /// Equivalent to `&bytes[..]`.
    ///
    /// # Examples
    ///
    /// ```
    /// use bytecode::ByteCode;
    ///
    /// let bytes = ByteCode::new(&[0, 1, 2, 3, 4, 5, 6, 7]);
    /// let slice = bytes.as_slice();
    /// ```
    pub fn as_slice(&self) -> &'a [u8] {
        self.inner
    }

    /// Returns the number of elements.
    ///
    /// Note that consumed elements are also counted.
    ///
    /// # Examples
    ///
    /// ```
    /// use bytecode::ByteCode;
    ///
    /// let bytes = ByteCode::new(&[0, 1, 2, 3, 4, 5, 6, 7]);
    /// assert_eq!(bytes.len(), 8);
    /// ```
    pub fn len(&self) -> usize {
        self.inner.len() + self.pos
    }

    /// Resets the pointer to original state.
    ///
    /// # Examples
    ///
    /// ```
    /// use bytecode::ByteCode;
    ///
    /// let v = vec![0, 1, 2, 3, 4, 5, 6, 7];
    /// let mut bytes = ByteCode::new(&v);
    /// bytes += 5;
    /// assert_eq!(bytes.as_slice(), [5, 6, 7]);
    /// bytes.reset();
    /// assert_eq!(bytes.as_slice(), v);
    /// ```
    pub fn reset(&mut self) {
        *self -= self.pos;
    }

    /// Returns `true` if all elements have been consumed.
    ///
    /// # Examples
    ///
    /// ```
    /// use bytecode::ByteCode;
    ///
    /// let mut bytes = ByteCode::new(&[0, 1, 2, 3, 4, 5, 6, 7]);
    ///
    /// bytes += 8;
    /// assert!(bytes.is_end());
    ///
    /// bytes -= 6;
    /// assert!(!bytes.is_end());
    /// ```
    pub fn is_end(&self) -> bool {
        self.pos == self.len()
    }
}

impl<'a> AddAssign<usize> for ByteCode<'a> {
    /// Move the pointer to the next.
    fn add_assign(&mut self, rhs: usize) {
        if rhs > self.inner.len() {
            panic!(
                "index out of bounds: the slice can only move forward {}, but tried to move {}",
                self.inner.len(),
                rhs
            );
        }
        self.inner = unsafe {
            let ptr = self.inner.as_ptr().add(rhs);
            std::slice::from_raw_parts(ptr, self.inner.len() - rhs)
        };
        self.pos += rhs;
    }
}

impl<'a> SubAssign<usize> for ByteCode<'a> {
    /// Move the pointer to the prev.
    fn sub_assign(&mut self, rhs: usize) {
        if rhs > self.pos {
            panic!(
                "index out of bounds: the slice can only move back {}, but tried to move {}",
                self.pos, rhs
            );
        }

        self.inner = unsafe {
            let ptr = self.inner.as_ptr().sub(rhs);
            std::slice::from_raw_parts(ptr, self.inner.len() + rhs)
        };
        self.pos -= rhs;
    }
}

impl<'a, I: SliceIndex<[u8]>> Index<I> for ByteCode<'a> {
    type Output = I::Output;
    fn index(&self, i: I) -> &Self::Output {
        Index::index(self.inner, i)
    }
}

#[test]
fn new() {
    let v = vec![0, 1, 2, 3, 4, 5, 6, 7];
    let bytes = ByteCode::new(&v);
    assert_eq!(bytes.inner, v);
    assert_eq!(bytes.pos, 0);
}

#[test]
fn as_slice() {
    let v = vec![0, 1, 2, 3, 4, 5, 6, 7];
    let bytes = ByteCode::new(&v);
    assert_eq!(bytes.as_slice(), v);
}

#[test]
fn len() {
    let mut bytes = ByteCode::new(&[0, 1, 2, 3, 4, 5, 6, 7]);
    bytes.skip(3);
    assert_eq!(bytes.inner.len(), 5); // `inner` is not public
    assert_eq!(bytes.len(), 8);
}

#[test]
fn reset() {
    let v = vec![0, 1, 2, 3, 4, 5, 6, 7];
    let mut bytes = ByteCode::new(&v);
    bytes.skip(5);
    assert_eq!(bytes.inner, [5, 6, 7]);
    assert_eq!(bytes.pos, 5);
    bytes.reset();
    assert_eq!(bytes.inner, v);
    assert_eq!(bytes.pos, 0);
}

#[test]
fn is_end() {
    let mut bytes = ByteCode::new(&[0, 1, 2, 3, 4, 5, 6, 7]);
    bytes.skip(8);
    assert!(bytes.is_end());
}

#[test]
fn add_assign() {
    let mut bytes = ByteCode::new(&[0, 1, 2, 3, 4, 5, 6, 7]);

    bytes += 1;
    assert_eq!(bytes.inner, [1, 2, 3, 4, 5, 6, 7]);
    assert_eq!(bytes.pos, 1);

    bytes += 3;
    assert_eq!(bytes.inner, [4, 5, 6, 7]);
    assert_eq!(bytes.pos, 4);
}

#[test]
fn sub_assign() {
    let mut bytes = ByteCode::new(&[0, 1, 2, 3, 4, 5, 6, 7]);

    bytes += 8;
    assert_eq!(bytes.inner, []);
    assert_eq!(bytes.pos, 8);

    bytes -= 1;
    assert_eq!(bytes.inner, [7]);
    assert_eq!(bytes.pos, 7);

    bytes -= 3;
    assert_eq!(bytes.inner, [4, 5, 6, 7]);
    assert_eq!(bytes.pos, 4);
}

#[test]
fn index() {
    let bytes = ByteCode::new(&[0, 1, 2, 3, 4, 5, 6, 7]);

    assert_eq!(bytes[4], 4);
    assert_eq!(bytes[2..], [2, 3, 4, 5, 6, 7]);
    assert_eq!(bytes[..6], [0, 1, 2, 3, 4, 5]);
    assert_eq!(bytes[2..6], [2, 3, 4, 5]);
    assert_eq!(bytes[2..=6], [2, 3, 4, 5, 6]);
}