bxcan_ng/lib.rs
1//! Driver for the STM32 bxCAN peripheral.
2//!
3//! This crate provides a reusable driver for the bxCAN peripheral found in many low- to middle-end
4//! STM32 microcontrollers. HALs for compatible chips can reexport this crate and implement its
5//! traits to easily expose a featureful CAN driver.
6//!
7//! # Features
8//!
9//! - Supports both single- and dual-peripheral configurations (where one bxCAN instance manages the
10//! filters of a secondary instance).
11//! - Handles standard and extended frames, and data and remote frames.
12//! - Support for interrupts emitted by the bxCAN peripheral.
13//! - Transmission respects CAN IDs and protects against priority inversion (a lower-priority frame
14//! may be dequeued when enqueueing a higher-priority one).
15//! - Implements the [`embedded-hal`] traits for interoperability.
16//! - Support for both RX FIFOs (as [`Rx0`] and [`Rx1`]).
17//!
18//! # Limitations
19//!
20//! - Support for querying error states and handling error interrupts is incomplete.
21//!
22//! # Cargo Features
23//!
24//! | Feature | Description |
25//! |---------|-------------|
26//! | `unstable-defmt` | Implements [`defmt`]'s `Format` trait for the types in this crate.[^1] |
27//!
28//! [^1]: The specific version of defmt is unspecified and may be updated in a patch release.
29//!
30//! [`defmt`]: https://docs.rs/defmt
31//! [`embedded-hal`]: https://docs.rs/embedded-hal
32
33#![doc(html_root_url = "https://docs.rs/bxcan/0.8.0")]
34// Deny a few warnings in doctests, since rustdoc `allow`s many warnings by default
35#![doc(test(attr(deny(unused_imports, unused_must_use))))]
36#![no_std]
37#![allow(clippy::unnecessary_operation)] // lint is bugged
38
39mod embedded_can;
40#[cfg(feature = "embedded-hal-02")]
41mod embedded_hal;
42pub mod filter;
43mod frame;
44mod id;
45mod interrupt;
46
47#[allow(clippy::all)] // generated code
48mod pac;
49
50pub use id::{ExtendedId, Id, StandardId};
51
52pub use crate::frame::{Data, Frame, FramePriority};
53pub use crate::interrupt::{Interrupt, Interrupts};
54pub use crate::pac::can::RegisterBlock;
55
56use crate::filter::MasterFilters;
57use core::cmp::{Ord, Ordering};
58use core::convert::{Infallible, TryInto};
59use core::marker::PhantomData;
60use core::mem;
61use core::ptr::NonNull;
62
63use self::pac::generic::*; // To make the PAC extraction build
64
65/// A bxCAN peripheral instance.
66///
67/// This trait is meant to be implemented for a HAL-specific type that represent ownership of
68/// the CAN peripheral (and any pins required by it, although that is entirely up to the HAL).
69///
70/// # Safety
71///
72/// It is only safe to implement this trait, when:
73///
74/// * The implementing type has ownership of the peripheral, preventing any other accesses to the
75/// register block.
76/// * `REGISTERS` is a pointer to that peripheral's register block and can be safely accessed for as
77/// long as ownership or a borrow of the implementing type is present.
78pub unsafe trait Instance {
79 /// Pointer to the instance's register block.
80 const REGISTERS: *mut RegisterBlock;
81}
82
83/// A bxCAN instance that owns filter banks.
84///
85/// In master-slave-instance setups, only the master instance owns the filter banks, and needs to
86/// split some of them off for use by the slave instance. In that case, the master instance should
87/// implement [`FilterOwner`] and [`MasterInstance`], while the slave instance should only implement
88/// [`Instance`].
89///
90/// In single-instance configurations, the instance owns all filter banks and they can not be split
91/// off. In that case, the instance should implement [`Instance`] and [`FilterOwner`].
92///
93/// # Safety
94///
95/// This trait must only be implemented if the instance does, in fact, own its associated filter
96/// banks, and `NUM_FILTER_BANKS` must be correct.
97pub unsafe trait FilterOwner: Instance {
98 /// The total number of filter banks available to the instance.
99 ///
100 /// This is usually either 14 or 28, and should be specified in the chip's reference manual or
101 /// datasheet.
102 const NUM_FILTER_BANKS: u8;
103}
104
105/// A bxCAN master instance that shares filter banks with a slave instance.
106///
107/// In master-slave-instance setups, this trait should be implemented for the master instance.
108///
109/// # Safety
110///
111/// This trait must only be implemented when there is actually an associated slave instance.
112pub unsafe trait MasterInstance: FilterOwner {}
113
114/// Enum of error status codes from the error status register.
115#[derive(Debug, Clone, Copy, PartialEq, Eq)]
116#[cfg_attr(feature = "unstable-defmt", derive(defmt::Format))]
117pub enum Error {
118 None,
119 Stuff,
120 Form,
121 Acknowledgement,
122 BitRecessive,
123 BitDominant,
124 Crc,
125 Software,
126}
127
128/// The peripheral's current error status.
129#[derive(Clone, PartialEq, Eq)]
130#[cfg_attr(feature = "unstable-defmt", derive(defmt::Format))]
131pub struct ErrorStatus {
132 pub(crate) recv_count: u8,
133 pub(crate) txmt_count: u8,
134 pub(crate) code: Error,
135 pub(crate) bus_off: bool,
136 pub(crate) err_passive: bool,
137 pub(crate) err_warning: bool,
138}
139
140impl ErrorStatus {
141 /// The receive error counter.
142 #[inline]
143 pub fn receive_counter(&self) -> u8 {
144 self.recv_count
145 }
146
147 /// The transmit error counter.
148 #[inline]
149 pub fn transmit_counter(&self) -> u8 {
150 self.recv_count
151 }
152
153 /// The last error code.
154 #[inline]
155 pub fn last_error(&self) -> Error {
156 self.code
157 }
158
159 /// Returns true if the peripheral is currently in bus-off.
160 ///
161 /// This occurs when the transmit error counter overflows past 255.
162 #[inline]
163 pub fn bus_off(&self) -> bool {
164 self.bus_off
165 }
166
167 /// Returns true if the error passive limit has been reached.
168 ///
169 /// This occurs when the receive or transmit error counters exceed 127.
170 #[inline]
171 pub fn error_passive(&self) -> bool {
172 self.err_passive
173 }
174
175 /// Returns true if the error warning limit has been reached.
176 ///
177 /// This occurs when the receive or transmit error counters are greater than or equal 96.
178 #[inline]
179 pub fn error_warning(&self) -> bool {
180 self.err_warning
181 }
182}
183
184/// Error that indicates that an incoming message has been lost due to buffer overrun.
185#[derive(Debug, Clone, Copy, PartialEq, Eq)]
186#[cfg_attr(feature = "unstable-defmt", derive(defmt::Format))]
187pub struct OverrunError {
188 _priv: (),
189}
190
191/// Identifier of a CAN message.
192///
193/// Can be either a standard identifier (11bit, Range: 0..0x3FF) or a
194/// extendended identifier (29bit , Range: 0..0x1FFFFFFF).
195///
196/// The `Ord` trait can be used to determine the frame’s priority this ID
197/// belongs to.
198/// Lower identifier values have a higher priority. Additionally standard frames
199/// have a higher priority than extended frames and data frames have a higher
200/// priority than remote frames.
201#[derive(Clone, Copy, Debug, PartialEq, Eq)]
202#[cfg_attr(feature = "unstable-defmt", derive(defmt::Format))]
203struct IdReg(u32);
204
205impl IdReg {
206 const STANDARD_SHIFT: u32 = 21;
207
208 const EXTENDED_SHIFT: u32 = 3;
209
210 const IDE_MASK: u32 = 0x0000_0004;
211
212 const RTR_MASK: u32 = 0x0000_0002;
213
214 /// Creates a new standard identifier (11bit, Range: 0..0x7FF)
215 ///
216 /// Panics for IDs outside the allowed range.
217 fn new_standard(id: StandardId) -> Self {
218 Self(u32::from(id.as_raw()) << Self::STANDARD_SHIFT)
219 }
220
221 /// Creates a new extendended identifier (29bit , Range: 0..0x1FFFFFFF).
222 ///
223 /// Panics for IDs outside the allowed range.
224 fn new_extended(id: ExtendedId) -> IdReg {
225 Self(id.as_raw() << Self::EXTENDED_SHIFT | Self::IDE_MASK)
226 }
227
228 fn from_register(reg: u32) -> IdReg {
229 Self(reg & 0xFFFF_FFFE)
230 }
231
232 /// Sets the remote transmission (RTR) flag. This marks the identifier as
233 /// being part of a remote frame.
234 #[must_use = "returns a new IdReg without modifying `self`"]
235 fn with_rtr(self, rtr: bool) -> IdReg {
236 if rtr {
237 Self(self.0 | Self::RTR_MASK)
238 } else {
239 Self(self.0 & !Self::RTR_MASK)
240 }
241 }
242
243 /// Returns the identifier.
244 fn to_id(self) -> Id {
245 if self.is_extended() {
246 Id::Extended(unsafe { ExtendedId::new_unchecked(self.0 >> Self::EXTENDED_SHIFT) })
247 } else {
248 Id::Standard(unsafe {
249 StandardId::new_unchecked((self.0 >> Self::STANDARD_SHIFT) as u16)
250 })
251 }
252 }
253
254 /// Returns `true` if the identifier is an extended identifier.
255 fn is_extended(self) -> bool {
256 self.0 & Self::IDE_MASK != 0
257 }
258
259 /// Returns `true` if the identifier is a standard identifier.
260 fn is_standard(self) -> bool {
261 !self.is_extended()
262 }
263
264 /// Returns `true` if the identifer is part of a remote frame (RTR bit set).
265 fn rtr(self) -> bool {
266 self.0 & Self::RTR_MASK != 0
267 }
268}
269
270/// `IdReg` is ordered by priority.
271impl Ord for IdReg {
272 fn cmp(&self, other: &Self) -> Ordering {
273 // When the IDs match, data frames have priority over remote frames.
274 let rtr = self.rtr().cmp(&other.rtr()).reverse();
275
276 let id_a = self.to_id();
277 let id_b = other.to_id();
278 match (id_a, id_b) {
279 (Id::Standard(a), Id::Standard(b)) => {
280 // Lower IDs have priority over higher IDs.
281 a.as_raw().cmp(&b.as_raw()).reverse().then(rtr)
282 }
283 (Id::Extended(a), Id::Extended(b)) => a.as_raw().cmp(&b.as_raw()).reverse().then(rtr),
284 (Id::Standard(a), Id::Extended(b)) => {
285 // Standard frames have priority over extended frames if their Base IDs match.
286 a.as_raw()
287 .cmp(&b.standard_id().as_raw())
288 .reverse()
289 .then(Ordering::Greater)
290 }
291 (Id::Extended(a), Id::Standard(b)) => a
292 .standard_id()
293 .as_raw()
294 .cmp(&b.as_raw())
295 .reverse()
296 .then(Ordering::Less),
297 }
298 }
299}
300
301impl PartialOrd for IdReg {
302 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
303 Some(self.cmp(other))
304 }
305}
306
307/// Configuration proxy returned by [`Can::modify_config`].
308#[must_use = "`CanConfig` leaves the peripheral in uninitialized state, call `CanConfig::enable` or explicitly drop the value"]
309pub struct CanConfig<'a, I: Instance> {
310 can: &'a mut Can<I>,
311}
312
313impl<I: Instance> CanConfig<'_, I> {
314 /// Configures the bit timings.
315 ///
316 /// You can use <http://www.bittiming.can-wiki.info/> to calculate the `btr` parameter. Enter
317 /// parameters as follows:
318 ///
319 /// - *Clock Rate*: The input clock speed to the CAN peripheral (*not* the CPU clock speed).
320 /// This is the clock rate of the peripheral bus the CAN peripheral is attached to (eg. APB1).
321 /// - *Sample Point*: Should normally be left at the default value of 87.5%.
322 /// - *SJW*: Should normally be left at the default value of 1.
323 ///
324 /// Then copy the `CAN_BUS_TIME` register value from the table and pass it as the `btr`
325 /// parameter to this method.
326 pub fn set_bit_timing(self, btr: u32) -> Self {
327 self.can.set_bit_timing(btr);
328 self
329 }
330
331 /// Enables or disables loopback mode: Internally connects the TX and RX
332 /// signals together.
333 pub fn set_loopback(self, enabled: bool) -> Self {
334 let can = self.can.registers();
335 can.btr.modify(|_, w| w.lbkm().bit(enabled));
336 self
337 }
338
339 /// Enables or disables silent mode: Disconnects the TX signal from the pin.
340 pub fn set_silent(self, enabled: bool) -> Self {
341 let can = self.can.registers();
342 can.btr.modify(|_, w| w.silm().bit(enabled));
343 self
344 }
345
346 /// Enables or disables automatic retransmission of messages.
347 ///
348 /// If this is enabled, the CAN peripheral will automatically try to retransmit each frame
349 /// until it can be sent. Otherwise, it will try only once to send each frame.
350 ///
351 /// Automatic retransmission is enabled by default.
352 pub fn set_automatic_retransmit(self, enabled: bool) -> Self {
353 let can = self.can.registers();
354 can.mcr.modify(|_, w| w.nart().bit(!enabled));
355 self
356 }
357
358 /// Leaves initialization mode and enables the peripheral.
359 ///
360 /// To sync with the CAN bus, this will block until 11 consecutive recessive bits are detected
361 /// on the bus.
362 ///
363 /// If you want to finish configuration without enabling the peripheral, you can call
364 /// [`CanConfig::leave_disabled`] or [`drop`] the [`CanConfig`] instead.
365 pub fn enable(mut self) {
366 self.leave_init_mode();
367
368 match nb::block!(self.can.enable_non_blocking()) {
369 Ok(()) => {}
370 Err(void) => match void {},
371 }
372
373 // Don't run the destructor.
374 mem::forget(self);
375 }
376
377 /// Leaves initialization mode, but keeps the peripheral in sleep mode.
378 ///
379 /// Before the [`Can`] instance can be used, you have to enable it by calling
380 /// [`Can::enable_non_blocking`].
381 pub fn leave_disabled(mut self) {
382 self.leave_init_mode();
383 }
384
385 /// Leaves initialization mode, enters sleep mode.
386 fn leave_init_mode(&mut self) {
387 let can = self.can.registers();
388 can.mcr
389 .modify(|_, w| w.sleep().set_bit().inrq().clear_bit());
390 loop {
391 let msr = can.msr.read();
392 if msr.slak().bit_is_set() && msr.inak().bit_is_clear() {
393 break;
394 }
395 }
396 }
397}
398
399impl<I: Instance> Drop for CanConfig<'_, I> {
400 #[inline]
401 fn drop(&mut self) {
402 self.leave_init_mode();
403 }
404}
405
406/// Builder returned by [`Can::builder`].
407#[must_use = "`CanBuilder` leaves the peripheral in uninitialized state, call `CanBuilder::enable` or `CanBuilder::leave_disabled`"]
408pub struct CanBuilder<I: Instance> {
409 can: Can<I>,
410}
411
412impl<I: Instance> CanBuilder<I> {
413 /// Configures the bit timings.
414 ///
415 /// You can use <http://www.bittiming.can-wiki.info/> to calculate the `btr` parameter. Enter
416 /// parameters as follows:
417 ///
418 /// - *Clock Rate*: The input clock speed to the CAN peripheral (*not* the CPU clock speed).
419 /// This is the clock rate of the peripheral bus the CAN peripheral is attached to (eg. APB1).
420 /// - *Sample Point*: Should normally be left at the default value of 87.5%.
421 /// - *SJW*: Should normally be left at the default value of 1.
422 ///
423 /// Then copy the `CAN_BUS_TIME` register value from the table and pass it as the `btr`
424 /// parameter to this method.
425 pub fn set_bit_timing(mut self, btr: u32) -> Self {
426 self.can.set_bit_timing(btr);
427 self
428 }
429
430 /// Enables or disables loopback mode: Internally connects the TX and RX
431 /// signals together.
432 pub fn set_loopback(self, enabled: bool) -> Self {
433 let can = self.can.registers();
434 can.btr.modify(|_, w| w.lbkm().bit(enabled));
435 self
436 }
437
438 /// Enables or disables silent mode: Disconnects the TX signal from the pin.
439 pub fn set_silent(self, enabled: bool) -> Self {
440 let can = self.can.registers();
441 can.btr.modify(|_, w| w.silm().bit(enabled));
442 self
443 }
444
445 /// Enables or disables automatic retransmission of messages.
446 ///
447 /// If this is enabled, the CAN peripheral will automatically try to retransmit each frame
448 /// until it can be sent. Otherwise, it will try only once to send each frame.
449 ///
450 /// Automatic retransmission is enabled by default.
451 pub fn set_automatic_retransmit(self, enabled: bool) -> Self {
452 let can = self.can.registers();
453 can.mcr.modify(|_, w| w.nart().bit(!enabled));
454 self
455 }
456
457 /// Leaves initialization mode and enables the peripheral.
458 ///
459 /// To sync with the CAN bus, this will block until 11 consecutive recessive bits are detected
460 /// on the bus.
461 ///
462 /// If you want to finish configuration without enabling the peripheral, you can call
463 /// [`CanBuilder::leave_disabled`] instead.
464 pub fn enable(mut self) -> Can<I> {
465 self.leave_init_mode();
466
467 match nb::block!(self.can.enable_non_blocking()) {
468 Ok(()) => self.can,
469 Err(void) => match void {},
470 }
471 }
472
473 /// Returns the [`Can`] interface without enabling it.
474 ///
475 /// This leaves initialization mode, but keeps the peripheral in sleep mode instead of enabling
476 /// it.
477 ///
478 /// Before the [`Can`] instance can be used, you have to enable it by calling
479 /// [`Can::enable_non_blocking`].
480 pub fn leave_disabled(mut self) -> Can<I> {
481 self.leave_init_mode();
482 self.can
483 }
484
485 /// Leaves initialization mode, enters sleep mode.
486 fn leave_init_mode(&mut self) {
487 let can = self.can.registers();
488 can.mcr
489 .modify(|_, w| w.sleep().set_bit().inrq().clear_bit());
490 loop {
491 let msr = can.msr.read();
492 if msr.slak().bit_is_set() && msr.inak().bit_is_clear() {
493 break;
494 }
495 }
496 }
497}
498
499/// Interface to a bxCAN peripheral.
500pub struct Can<I: Instance> {
501 instance: I,
502}
503
504impl<I> Can<I>
505where
506 I: Instance,
507{
508 /// Creates a [`CanBuilder`] for constructing a CAN interface.
509 pub fn builder(instance: I) -> CanBuilder<I> {
510 let can_builder = CanBuilder {
511 can: Can { instance },
512 };
513
514 let can_reg = can_builder.can.registers();
515 // Enter init mode.
516 can_reg
517 .mcr
518 .modify(|_, w| w.sleep().clear_bit().inrq().set_bit());
519 loop {
520 let msr = can_reg.msr.read();
521 if msr.slak().bit_is_clear() && msr.inak().bit_is_set() {
522 break;
523 }
524 }
525
526 can_builder
527 }
528
529 fn registers(&self) -> &RegisterBlock {
530 unsafe { &*I::REGISTERS }
531 }
532
533 fn set_bit_timing(&mut self, btr: u32) {
534 // Mask of all non-reserved BTR bits, except the mode flags.
535 const MASK: u32 = 0x037F_03FF;
536
537 let can = self.registers();
538 can.btr.modify(|r, w| unsafe {
539 let mode_bits = r.bits() & 0xC000_0000;
540 w.bits(mode_bits | (btr & MASK))
541 });
542 }
543
544 /// Returns a reference to the peripheral instance.
545 ///
546 /// This allows accessing HAL-specific data stored in the instance type.
547 pub fn instance(&mut self) -> &mut I {
548 &mut self.instance
549 }
550
551 /// Disables the CAN interface and returns back the raw peripheral it was created from.
552 ///
553 /// The peripheral is disabled by setting `RESET` in `CAN_MCR`, which causes the peripheral to
554 /// enter sleep mode.
555 pub fn free(self) -> I {
556 self.registers().mcr.write(|w| w.reset().set_bit());
557 self.instance
558 }
559
560 /// Configure bit timings and silent/loop-back mode.
561 ///
562 /// Calling this method will enter initialization mode.
563 pub fn modify_config(&mut self) -> CanConfig<'_, I> {
564 let can = self.registers();
565
566 // Enter init mode.
567 can.mcr
568 .modify(|_, w| w.sleep().clear_bit().inrq().set_bit());
569 loop {
570 let msr = can.msr.read();
571 if msr.slak().bit_is_clear() && msr.inak().bit_is_set() {
572 break;
573 }
574 }
575
576 CanConfig { can: self }
577 }
578
579 /// Configures the automatic wake-up feature.
580 ///
581 /// This is turned off by default.
582 ///
583 /// When turned on, an incoming frame will cause the peripheral to wake up from sleep and
584 /// receive the frame. If enabled, [`Interrupt::Wakeup`] will also be triggered by the incoming
585 /// frame.
586 pub fn set_automatic_wakeup(&mut self, enabled: bool) {
587 let can = self.registers();
588 can.mcr.modify(|_, w| w.awum().bit(enabled));
589 }
590
591 /// Leaves initialization mode and enables the peripheral (non-blocking version).
592 ///
593 /// Usually, it is recommended to call [`CanConfig::enable`] instead. This method is only needed
594 /// if you want non-blocking initialization.
595 ///
596 /// If this returns [`WouldBlock`][nb::Error::WouldBlock], the peripheral will enable itself
597 /// in the background. The peripheral is enabled and ready to use when this method returns
598 /// successfully.
599 pub fn enable_non_blocking(&mut self) -> nb::Result<(), Infallible> {
600 let can = self.registers();
601 let msr = can.msr.read();
602 if msr.slak().bit_is_set() {
603 can.mcr
604 .modify(|_, w| w.abom().set_bit().sleep().clear_bit());
605 Err(nb::Error::WouldBlock)
606 } else {
607 Ok(())
608 }
609 }
610
611 /// Puts the peripheral in a sleep mode to save power.
612 ///
613 /// While in sleep mode, an incoming CAN frame will trigger [`Interrupt::Wakeup`] if enabled.
614 pub fn sleep(&mut self) {
615 let can = self.registers();
616 can.mcr
617 .modify(|_, w| w.sleep().set_bit().inrq().clear_bit());
618 loop {
619 let msr = can.msr.read();
620 if msr.slak().bit_is_set() && msr.inak().bit_is_clear() {
621 break;
622 }
623 }
624 }
625
626 /// Wakes up from sleep mode.
627 ///
628 /// Note that this will not trigger [`Interrupt::Wakeup`], only reception of an incoming CAN
629 /// frame will cause that interrupt.
630 pub fn wakeup(&mut self) {
631 let can = self.registers();
632 can.mcr
633 .modify(|_, w| w.sleep().clear_bit().inrq().clear_bit());
634 loop {
635 let msr = can.msr.read();
636 if msr.slak().bit_is_clear() && msr.inak().bit_is_clear() {
637 break;
638 }
639 }
640 }
641
642 /// Starts listening for a CAN interrupt.
643 pub fn enable_interrupt(&mut self, interrupt: Interrupt) {
644 self.enable_interrupts(Interrupts::from_bits_truncate(interrupt as u32))
645 }
646
647 /// Starts listening for a set of CAN interrupts.
648 pub fn enable_interrupts(&mut self, interrupts: Interrupts) {
649 self.registers()
650 .ier
651 .modify(|r, w| unsafe { w.bits(r.bits() | interrupts.bits()) })
652 }
653
654 /// Stops listening for a CAN interrupt.
655 pub fn disable_interrupt(&mut self, interrupt: Interrupt) {
656 self.disable_interrupts(Interrupts::from_bits_truncate(interrupt as u32))
657 }
658
659 /// Stops listening for a set of CAN interrupts.
660 pub fn disable_interrupts(&mut self, interrupts: Interrupts) {
661 self.registers()
662 .ier
663 .modify(|r, w| unsafe { w.bits(r.bits() & !interrupts.bits()) })
664 }
665
666 /// Clears the pending flag of [`Interrupt::Sleep`].
667 pub fn clear_sleep_interrupt(&self) {
668 let can = self.registers();
669 // Read-only register with write-1-to-clear, so `&self` is sufficient.
670 can.msr.write(|w| w.slaki().set_bit());
671 }
672
673 /// Clears the pending flag of [`Interrupt::Wakeup`].
674 pub fn clear_wakeup_interrupt(&self) {
675 let can = self.registers();
676 // Read-only register with write-1-to-clear, so `&self` is sufficient.
677 can.msr.write(|w| w.wkui().set_bit());
678 }
679
680 /// Clears the "Request Completed" (RQCP) flag of a transmit mailbox.
681 ///
682 /// Returns the [`Mailbox`] whose flag was cleared. If no mailbox has the flag set, returns
683 /// `None`.
684 ///
685 /// Once this function returns `None`, a pending [`Interrupt::TransmitMailboxEmpty`] is
686 /// considered acknowledged.
687 pub fn clear_request_completed_flag(&mut self) -> Option<Mailbox> {
688 let can = self.registers();
689 let tsr = can.tsr.read();
690 if tsr.rqcp0().bit_is_set() {
691 can.tsr.modify(|_, w| w.rqcp0().set_bit());
692 Some(Mailbox::Mailbox0)
693 } else if tsr.rqcp1().bit_is_set() {
694 can.tsr.modify(|_, w| w.rqcp1().set_bit());
695 Some(Mailbox::Mailbox1)
696 } else if tsr.rqcp2().bit_is_set() {
697 can.tsr.modify(|_, w| w.rqcp2().set_bit());
698 Some(Mailbox::Mailbox2)
699 } else {
700 None
701 }
702 }
703
704 /// Clears a pending TX interrupt ([`Interrupt::TransmitMailboxEmpty`]).
705 ///
706 /// This does not return the mailboxes that have finished tranmission. If you need that
707 /// information, call [`Can::clear_request_completed_flag`] instead.
708 pub fn clear_tx_interrupt(&mut self) {
709 while self.clear_request_completed_flag().is_some() {}
710 }
711
712 /// Clears the error interrupt flag ([`Interrupt::Error`]).
713 ///
714 /// To read the error status, use [`Can::error_status`] to get the [`ErrorStatus`] before
715 /// clearing the interrupt flag.
716 pub fn clear_error_interrupt(&mut self) {
717 let can = self.registers();
718 can.msr.write(|w| w.erri().set_bit());
719 }
720
721 /// Reads the error status register's data.
722 ///
723 /// This does not clear the error interrupt flag.
724 pub fn error_status(&self) -> ErrorStatus {
725 let can = self.registers();
726 let esr = can.esr.read();
727
728 ErrorStatus {
729 recv_count: esr.rec().bits,
730 txmt_count: esr.tec().bits,
731 code: (match esr.lec().bits {
732 0b000 => Error::None,
733 0b001 => Error::Stuff,
734 0b010 => Error::Form,
735 0b011 => Error::Acknowledgement,
736 0b100 => Error::BitRecessive,
737 0b101 => Error::BitDominant,
738 0b110 => Error::Crc,
739 0b111 => Error::Software,
740 _ => unreachable!(),
741 }),
742 bus_off: esr.boff().bits,
743 err_passive: esr.epvf().bits,
744 err_warning: esr.ewgf().bits,
745 }
746 }
747
748 /// Puts a CAN frame in a free transmit mailbox for transmission on the bus.
749 ///
750 /// Frames are transmitted to the bus based on their priority (see [`FramePriority`]).
751 /// Transmit order is preserved for frames with identical priority.
752 ///
753 /// If all transmit mailboxes are full, and `frame` has a higher priority than the
754 /// lowest-priority message in the transmit mailboxes, transmission of the enqueued frame is
755 /// cancelled and `frame` is enqueued instead. The frame that was replaced is returned as
756 /// [`TransmitStatus::dequeued_frame`].
757 pub fn transmit(&mut self, frame: &Frame) -> nb::Result<TransmitStatus, Infallible> {
758 // Safety: We have a `&mut self` and have unique access to the peripheral.
759 unsafe { Tx::<I>::conjure().transmit(frame) }
760 }
761
762 /// Returns `true` if no frame is pending for transmission.
763 pub fn is_transmitter_idle(&self) -> bool {
764 // Safety: Read-only operation.
765 unsafe { Tx::<I>::conjure().is_idle() }
766 }
767
768 /// Attempts to abort the sending of a frame that is pending in a mailbox.
769 ///
770 /// If there is no frame in the provided mailbox, or its transmission succeeds before it can be
771 /// aborted, this function has no effect and returns `false`.
772 ///
773 /// If there is a frame in the provided mailbox, and it is canceled successfully, this function
774 /// returns `true`.
775 pub fn abort(&mut self, mailbox: Mailbox) -> bool {
776 // Safety: We have a `&mut self` and have unique access to the peripheral.
777 unsafe { Tx::<I>::conjure().abort(mailbox) }
778 }
779
780 /// Returns a received frame if available.
781 ///
782 /// This will first check FIFO 0 for a message or error. If none are available, FIFO 1 is
783 /// checked.
784 ///
785 /// Returns `Err` when a frame was lost due to buffer overrun.
786 pub fn receive(&mut self) -> nb::Result<Frame, OverrunError> {
787 // Safety: We have a `&mut self` and have unique access to the peripheral.
788 let mut rx0 = unsafe { Rx0::<I>::conjure() };
789 let mut rx1 = unsafe { Rx1::<I>::conjure() };
790
791 match rx0.receive() {
792 Err(nb::Error::WouldBlock) => rx1.receive(),
793 result => result,
794 }
795 }
796
797 /// Returns a reference to the RX FIFO 0.
798 pub fn rx0(&mut self) -> &mut Rx0<I> {
799 // Safety: We take `&mut self` and the return value lifetimes are tied to `self`'s lifetime.
800 unsafe { Rx0::conjure_by_ref() }
801 }
802
803 /// Returns a reference to the RX FIFO 1.
804 pub fn rx1(&mut self) -> &mut Rx1<I> {
805 // Safety: We take `&mut self` and the return value lifetimes are tied to `self`'s lifetime.
806 unsafe { Rx1::conjure_by_ref() }
807 }
808
809 /// Splits this `Can` instance into transmitting and receiving halves, by reference.
810 pub fn split_by_ref(&mut self) -> (&mut Tx<I>, &mut Rx0<I>, &mut Rx1<I>) {
811 // Safety: We take `&mut self` and the return value lifetimes are tied to `self`'s lifetime.
812 let tx = unsafe { Tx::conjure_by_ref() };
813 let rx0 = unsafe { Rx0::conjure_by_ref() };
814 let rx1 = unsafe { Rx1::conjure_by_ref() };
815 (tx, rx0, rx1)
816 }
817
818 /// Consumes this `Can` instance and splits it into transmitting and receiving halves.
819 pub fn split(self) -> (Tx<I>, Rx0<I>, Rx1<I>) {
820 // Safety: `Self` is not `Copy` and is destroyed by moving it into this method.
821 unsafe { (Tx::conjure(), Rx0::conjure(), Rx1::conjure()) }
822 }
823}
824
825impl<I: FilterOwner> Can<I> {
826 /// Accesses the filter banks owned by this CAN peripheral.
827 ///
828 /// To modify filters of a slave peripheral, `modify_filters` has to be called on the master
829 /// peripheral instead.
830 pub fn modify_filters(&mut self) -> MasterFilters<'_, I> {
831 unsafe { MasterFilters::new() }
832 }
833}
834
835/// Interface to the CAN transmitter part.
836pub struct Tx<I> {
837 _can: PhantomData<I>,
838}
839
840#[inline]
841const fn ok_mask(idx: usize) -> u32 {
842 0x02 << (8 * idx)
843}
844
845#[inline]
846const fn abort_mask(idx: usize) -> u32 {
847 0x80 << (8 * idx)
848}
849
850impl<I> Tx<I>
851where
852 I: Instance,
853{
854 unsafe fn conjure() -> Self {
855 Self { _can: PhantomData }
856 }
857
858 /// Creates a `&mut Self` out of thin air.
859 ///
860 /// This is only safe if it is the only way to access a `Tx<I>`.
861 unsafe fn conjure_by_ref<'a>() -> &'a mut Self {
862 // Cause out of bounds access when `Self` is not zero-sized.
863 [()][core::mem::size_of::<Self>()];
864
865 // Any aligned pointer is valid for ZSTs.
866 &mut *NonNull::dangling().as_ptr()
867 }
868
869 fn registers(&self) -> &RegisterBlock {
870 unsafe { &*I::REGISTERS }
871 }
872
873 /// Puts a CAN frame in a transmit mailbox for transmission on the bus.
874 ///
875 /// Frames are transmitted to the bus based on their priority (see [`FramePriority`]).
876 /// Transmit order is preserved for frames with identical priority.
877 ///
878 /// If all transmit mailboxes are full, and `frame` has a higher priority than the
879 /// lowest-priority message in the transmit mailboxes, transmission of the enqueued frame is
880 /// cancelled and `frame` is enqueued instead. The frame that was replaced is returned as
881 /// [`TransmitStatus::dequeued_frame`].
882 pub fn transmit(&mut self, frame: &Frame) -> nb::Result<TransmitStatus, Infallible> {
883 let can = self.registers();
884
885 // Get the index of the next free mailbox or the one with the lowest priority.
886 let tsr = can.tsr.read();
887 let idx = tsr.code().bits() as usize;
888
889 let frame_is_pending =
890 tsr.tme0().bit_is_clear() || tsr.tme1().bit_is_clear() || tsr.tme2().bit_is_clear();
891 let pending_frame = if frame_is_pending {
892 // High priority frames are transmitted first by the mailbox system.
893 // Frames with identical identifier shall be transmitted in FIFO order.
894 // The controller schedules pending frames of same priority based on the
895 // mailbox index instead. As a workaround check all pending mailboxes
896 // and only accept higher priority frames.
897 self.check_priority(0, frame.id)?;
898 self.check_priority(1, frame.id)?;
899 self.check_priority(2, frame.id)?;
900
901 let all_frames_are_pending =
902 tsr.tme0().bit_is_clear() && tsr.tme1().bit_is_clear() && tsr.tme2().bit_is_clear();
903 if all_frames_are_pending {
904 // No free mailbox is available. This can only happen when three frames with
905 // ascending priority (descending IDs) were requested for transmission and all
906 // of them are blocked by bus traffic with even higher priority.
907 // To prevent a priority inversion abort and replace the lowest priority frame.
908 self.read_pending_mailbox(idx)
909 } else {
910 // There was a free mailbox.
911 None
912 }
913 } else {
914 // All mailboxes are available: Send frame without performing any checks.
915 None
916 };
917
918 self.write_mailbox(idx, frame);
919
920 let mailbox = match idx {
921 0 => Mailbox::Mailbox0,
922 1 => Mailbox::Mailbox1,
923 2 => Mailbox::Mailbox2,
924 _ => unreachable!(),
925 };
926 Ok(TransmitStatus {
927 dequeued_frame: pending_frame,
928 mailbox,
929 })
930 }
931
932 /// Returns `Ok` when the mailbox is free or if it contains pending frame with a
933 /// lower priority (higher ID) than the identifier `id`.
934 fn check_priority(&self, idx: usize, id: IdReg) -> nb::Result<(), Infallible> {
935 let can = self.registers();
936
937 // Read the pending frame's id to check its priority.
938 assert!(idx < 3);
939 let tir = &can.tx[idx].tir.read();
940
941 // Check the priority by comparing the identifiers. But first make sure the
942 // frame has not finished the transmission (`TXRQ` == 0) in the meantime.
943 if tir.txrq().bit_is_set() && id <= IdReg::from_register(tir.bits()) {
944 // There's a mailbox whose priority is higher or equal
945 // the priority of the new frame.
946 return Err(nb::Error::WouldBlock);
947 }
948
949 Ok(())
950 }
951
952 fn write_mailbox(&mut self, idx: usize, frame: &Frame) {
953 let can = self.registers();
954
955 debug_assert!(idx < 3);
956 let mb = unsafe { &can.tx.get_unchecked(idx) };
957
958 mb.tdtr
959 .write(|w| unsafe { w.dlc().bits(frame.dlc() as u8) });
960 mb.tdlr.write(|w| unsafe {
961 w.bits(u32::from_ne_bytes(
962 frame.data.bytes[0..4].try_into().unwrap(),
963 ))
964 });
965 mb.tdhr.write(|w| unsafe {
966 w.bits(u32::from_ne_bytes(
967 frame.data.bytes[4..8].try_into().unwrap(),
968 ))
969 });
970 mb.tir
971 .write(|w| unsafe { w.bits(frame.id.0).txrq().set_bit() });
972 }
973
974 fn read_pending_mailbox(&mut self, idx: usize) -> Option<Frame> {
975 if self.abort_by_index(idx) {
976 let can = self.registers();
977 debug_assert!(idx < 3);
978 let mb = unsafe { &can.tx.get_unchecked(idx) };
979
980 // Read back the pending frame.
981 let mut pending_frame = Frame {
982 id: IdReg(mb.tir.read().bits()),
983 data: Data::empty(),
984 };
985 pending_frame.data.bytes[0..4].copy_from_slice(&mb.tdlr.read().bits().to_ne_bytes());
986 pending_frame.data.bytes[4..8].copy_from_slice(&mb.tdhr.read().bits().to_ne_bytes());
987 pending_frame.data.len = mb.tdtr.read().dlc().bits();
988
989 Some(pending_frame)
990 } else {
991 // Abort request failed because the frame was already sent (or being sent) on
992 // the bus. All mailboxes are now free. This can happen for small prescaler
993 // values (e.g. 1MBit/s bit timing with a source clock of 8MHz) or when an ISR
994 // has preempted the execution.
995 None
996 }
997 }
998
999 /// Tries to abort a pending frame. Returns `true` when aborted.
1000 fn abort_by_index(&mut self, idx: usize) -> bool {
1001 let can = self.registers();
1002
1003 can.tsr.write(|w| unsafe { w.bits(abort_mask(idx)) });
1004
1005 // Wait for the abort request to be finished.
1006 loop {
1007 let tsr = can.tsr.read().bits();
1008 if tsr & abort_mask(idx) == 0 {
1009 break tsr & ok_mask(idx) == 0;
1010 }
1011 }
1012 }
1013
1014 /// Attempts to abort the sending of a frame that is pending in a mailbox.
1015 ///
1016 /// If there is no frame in the provided mailbox, or its transmission succeeds before it can be
1017 /// aborted, this function has no effect and returns `false`.
1018 ///
1019 /// If there is a frame in the provided mailbox, and it is canceled successfully, this function
1020 /// returns `true`.
1021 pub fn abort(&mut self, mailbox: Mailbox) -> bool {
1022 // If the mailbox is empty, the value of TXOKx depends on what happened with the previous
1023 // frame in that mailbox. Only call abort_by_index() if the mailbox is not empty.
1024 let tsr = self.registers().tsr.read();
1025 let mailbox_empty = match mailbox {
1026 Mailbox::Mailbox0 => tsr.tme0().bit_is_set(),
1027 Mailbox::Mailbox1 => tsr.tme1().bit_is_set(),
1028 Mailbox::Mailbox2 => tsr.tme2().bit_is_set(),
1029 };
1030 if mailbox_empty {
1031 false
1032 } else {
1033 self.abort_by_index(mailbox as usize)
1034 }
1035 }
1036
1037 /// Returns `true` if no frame is pending for transmission.
1038 pub fn is_idle(&self) -> bool {
1039 let can = self.registers();
1040 let tsr = can.tsr.read();
1041 tsr.tme0().bit_is_set() && tsr.tme1().bit_is_set() && tsr.tme2().bit_is_set()
1042 }
1043
1044 /// Clears the request complete flag for all mailboxes.
1045 pub fn clear_interrupt_flags(&mut self) {
1046 let can = self.registers();
1047 can.tsr
1048 .write(|w| w.rqcp2().set_bit().rqcp1().set_bit().rqcp0().set_bit());
1049 }
1050}
1051
1052/// Interface to receiver FIFO 0.
1053pub struct Rx0<I> {
1054 _can: PhantomData<I>,
1055}
1056
1057impl<I> Rx0<I>
1058where
1059 I: Instance,
1060{
1061 unsafe fn conjure() -> Self {
1062 Self { _can: PhantomData }
1063 }
1064
1065 /// Creates a `&mut Self` out of thin air.
1066 ///
1067 /// This is only safe if it is the only way to access an `Rx<I>`.
1068 unsafe fn conjure_by_ref<'a>() -> &'a mut Self {
1069 // Cause out of bounds access when `Self` is not zero-sized.
1070 [()][core::mem::size_of::<Self>()];
1071
1072 // Any aligned pointer is valid for ZSTs.
1073 &mut *NonNull::dangling().as_ptr()
1074 }
1075
1076 /// Returns a received frame if available.
1077 ///
1078 /// Returns `Err` when a frame was lost due to buffer overrun.
1079 pub fn receive(&mut self) -> nb::Result<Frame, OverrunError> {
1080 receive_fifo(self.registers(), 0)
1081 }
1082
1083 fn registers(&self) -> &RegisterBlock {
1084 unsafe { &*I::REGISTERS }
1085 }
1086}
1087
1088/// Interface to receiver FIFO 1.
1089pub struct Rx1<I> {
1090 _can: PhantomData<I>,
1091}
1092
1093impl<I> Rx1<I>
1094where
1095 I: Instance,
1096{
1097 unsafe fn conjure() -> Self {
1098 Self { _can: PhantomData }
1099 }
1100
1101 /// Creates a `&mut Self` out of thin air.
1102 ///
1103 /// This is only safe if it is the only way to access an `Rx<I>`.
1104 unsafe fn conjure_by_ref<'a>() -> &'a mut Self {
1105 // Cause out of bounds access when `Self` is not zero-sized.
1106 [()][core::mem::size_of::<Self>()];
1107
1108 // Any aligned pointer is valid for ZSTs.
1109 &mut *NonNull::dangling().as_ptr()
1110 }
1111
1112 /// Returns a received frame if available.
1113 ///
1114 /// Returns `Err` when a frame was lost due to buffer overrun.
1115 pub fn receive(&mut self) -> nb::Result<Frame, OverrunError> {
1116 receive_fifo(self.registers(), 1)
1117 }
1118
1119 fn registers(&self) -> &RegisterBlock {
1120 unsafe { &*I::REGISTERS }
1121 }
1122}
1123
1124fn receive_fifo(can: &RegisterBlock, fifo_nr: usize) -> nb::Result<Frame, OverrunError> {
1125 assert!(fifo_nr < 2);
1126 let rfr = &can.rfr[fifo_nr];
1127 let rx = &can.rx[fifo_nr];
1128
1129 // Check if a frame is available in the mailbox.
1130 let rfr_read = rfr.read();
1131 if rfr_read.fmp().bits() == 0 {
1132 return Err(nb::Error::WouldBlock);
1133 }
1134
1135 // Check for RX FIFO overrun.
1136 if rfr_read.fovr().bit_is_set() {
1137 rfr.write(|w| w.fovr().set_bit());
1138 return Err(nb::Error::Other(OverrunError { _priv: () }));
1139 }
1140
1141 // Read the frame.
1142 let mut frame = Frame {
1143 id: IdReg(rx.rir.read().bits()),
1144 data: [0; 8].into(),
1145 };
1146 frame.data[0..4].copy_from_slice(&rx.rdlr.read().bits().to_ne_bytes());
1147 frame.data[4..8].copy_from_slice(&rx.rdhr.read().bits().to_ne_bytes());
1148 frame.data.len = rx.rdtr.read().dlc().bits();
1149
1150 // Release the mailbox.
1151 rfr.write(|w| w.rfom().set_bit());
1152
1153 Ok(frame)
1154}
1155
1156/// Identifies one of the two receive FIFOs.
1157#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
1158#[cfg_attr(feature = "unstable-defmt", derive(defmt::Format))]
1159pub enum Fifo {
1160 Fifo0 = 0,
1161 Fifo1 = 1,
1162}
1163
1164/// Identifies one of the three transmit mailboxes.
1165#[derive(Debug, Copy, Clone, Ord, PartialOrd, Eq, PartialEq)]
1166#[cfg_attr(feature = "unstable-defmt", derive(defmt::Format))]
1167pub enum Mailbox {
1168 /// Transmit mailbox 0
1169 Mailbox0 = 0,
1170 /// Transmit mailbox 1
1171 Mailbox1 = 1,
1172 /// Transmit mailbox 2
1173 Mailbox2 = 2,
1174}
1175
1176/// Contains information about a frame enqueued for transmission via [`Can::transmit`] or
1177/// [`Tx::transmit`].
1178pub struct TransmitStatus {
1179 dequeued_frame: Option<Frame>,
1180 mailbox: Mailbox,
1181}
1182
1183impl TransmitStatus {
1184 /// Returns the lower-priority frame that was dequeued to make space for the new frame.
1185 #[inline]
1186 pub fn dequeued_frame(&self) -> Option<&Frame> {
1187 self.dequeued_frame.as_ref()
1188 }
1189
1190 /// Returns the [`Mailbox`] the frame was enqueued in.
1191 #[inline]
1192 pub fn mailbox(&self) -> Mailbox {
1193 self.mailbox
1194 }
1195}