use crate::{
compute::StaticKernel,
element::WgpuElement,
kernel::{self, build_info, elemwise_workgroup, KernelSettings, WORKGROUP_DEFAULT},
kernel_wgsl,
ops::numeric::empty_device,
tensor::WgpuTensor,
};
use burn_tensor::{
ops::{conv::calculate_conv_output_size, ConvOptions},
Element, ElementConversion, Shape,
};
kernel_wgsl!(Conv2d, "../../template/conv/conv2d.wgsl");
pub(crate) fn conv2d<E: WgpuElement + Element>(
input: WgpuTensor<E, 4>,
weight: WgpuTensor<E, 4>,
bias: Option<WgpuTensor<E, 1>>,
options: ConvOptions<2>,
) -> WgpuTensor<E, 4> {
let input = kernel::into_contiguous(input);
let weight = kernel::into_contiguous(weight);
let [batch_size, _, in_height, in_width] = input.shape.dims;
let [out_channels, _, kernel_0, kernel_1] = weight.shape.dims;
let out_0 = calculate_conv_output_size(
kernel_0,
options.stride[0],
options.padding[0],
options.dilation[0],
in_height,
);
let out_1 = calculate_conv_output_size(
kernel_1,
options.stride[1],
options.padding[1],
options.dilation[1],
in_width,
);
let shape_out = Shape::new([batch_size, out_channels, out_0, out_1]);
let output = empty_device(
input.client.clone(),
input.device.clone(),
shape_out.clone(),
);
let mut info = build_info(&[&input, &output, &weight]);
info.push(options.stride[0] as u32);
info.push(options.stride[1] as u32);
info.push(options.padding[0] as u32);
info.push(options.padding[1] as u32);
info.push(options.dilation[0] as u32);
info.push(options.dilation[1] as u32);
info.push(options.groups as u32);
let bias_handle = bias
.map(|bias| bias.handle)
.unwrap_or_else(|| input.client.create(E::as_bytes(&[0.elem()])));
let info_handle = input.client.create(bytemuck::cast_slice(&info));
let kernel = StaticKernel::<
KernelSettings<Conv2d, E, i32, WORKGROUP_DEFAULT, WORKGROUP_DEFAULT, 1>,
>::new(elemwise_workgroup(
output.shape.num_elements(),
WORKGROUP_DEFAULT,
));
input.client.execute(
Box::new(kernel),
&[
&input.handle,
&weight.handle,
&bias_handle,
&output.handle,
&info_handle,
],
);
output
}
#[cfg(test)]
mod tests {
use crate::tests::{ReferenceBackend, TestBackend};
use burn_tensor::{module, Distribution, Tensor};
#[test]
fn conv2d_should_work_with_multiple_invocations() {
let input = Tensor::<TestBackend, 4>::random([6, 16, 32, 32], Distribution::Default);
let weight = Tensor::<TestBackend, 4>::random([12, 8, 3, 3], Distribution::Default);
let bias = Tensor::<TestBackend, 1>::random([12], Distribution::Default);
let input_ref = Tensor::<ReferenceBackend, 4>::from_data(input.to_data());
let weight_ref = Tensor::<ReferenceBackend, 4>::from_data(weight.to_data());
let bias_ref = Tensor::<ReferenceBackend, 1>::from_data(bias.to_data());
let options = burn_tensor::ops::ConvOptions::new([2, 3], [2, 3], [2, 3], 2);
let output = module::conv2d(input, weight, Some(bias), options.clone());
let output_ref = module::conv2d(input_ref, weight_ref, Some(bias_ref), options);
output
.into_data()
.assert_approx_eq(&output_ref.into_data(), 3);
}
}