1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
use crate::{
    compute::{StaticKernel, WorkGroup},
    element::WgpuElement,
    kernel::{build_info, KernelSettings, SourceTemplate, StaticKernelSource, WORKGROUP_DEFAULT},
    kernel_wgsl,
    tensor::WgpuTensor,
};

kernel_wgsl!(
    ReductionDimSharedMemoryRaw,
    "../../template/reduction/reduce_dim_shared_memory.wgsl"
);

pub(crate) struct SumDimSharedMemory;
pub(crate) struct MeanDimSharedMemory;

impl StaticKernelSource for SumDimSharedMemory {
    fn source() -> SourceTemplate {
        ReductionDimSharedMemoryRaw::source()
            .register(
                "shared_size",
                (WORKGROUP_DEFAULT * WORKGROUP_DEFAULT).to_string(),
            )
            .register("initial", 0.0.to_string())
            .register("update", "shared_memory[local_id] += value; ")
            .register("assign", "output[output_position] = final_value; ")
    }
}

impl StaticKernelSource for MeanDimSharedMemory {
    fn source() -> SourceTemplate {
        ReductionDimSharedMemoryRaw::source()
            .register(
                "shared_size",
                (WORKGROUP_DEFAULT * WORKGROUP_DEFAULT).to_string(),
            )
            .register("initial", 0.0.to_string())
            .register("update", "shared_memory[local_id] += value; ")
            .add_template(
                "fn mean_dim(sum: {{ elem }}, dim: u32) -> {{ elem }} { 
                    return sum / {{ elem }}(dim);
                }",
            )
            .register(
                "assign",
                "output[output_position] = mean_dim(final_value, shape_input_dim_reduce);",
            )
    }
}

/// Execute the sum dim kernel leveraging shared memory
/// Probably more efficient on tensors where the dimension to reduced
/// is much larger than the others
pub fn sum_dim_shared_memory<E: WgpuElement, const D: usize>(
    input: WgpuTensor<E, D>,
    output: WgpuTensor<E, D>,
    dim: usize,
) -> WgpuTensor<E, D> {
    reduction_dim_shared_memory::<SumDimSharedMemory, E, D>(input, output, dim)
}

/// Execute the mean dim kernel leveraging shared memory
/// Probably more efficient on tensors where the dimension to reduced
/// is much larger than the others
pub fn mean_dim_shared_memory<E: WgpuElement, const D: usize>(
    input: WgpuTensor<E, D>,
    output: WgpuTensor<E, D>,
    dim: usize,
) -> WgpuTensor<E, D> {
    reduction_dim_shared_memory::<MeanDimSharedMemory, E, D>(input, output, dim)
}

fn reduction_dim_shared_memory<K: StaticKernelSource, E: WgpuElement, const D: usize>(
    input: WgpuTensor<E, D>,
    output: WgpuTensor<E, D>,
    reduce_dim: usize,
) -> WgpuTensor<E, D> {
    let num_elems_output = output.shape.num_elements();
    let n_workgroups_x = f32::ceil(f32::sqrt(num_elems_output as f32));
    let n_workgroups_y = f32::ceil(num_elems_output as f32 / n_workgroups_x);
    let grid = WorkGroup::new(n_workgroups_x as u32, n_workgroups_y as u32, 1);

    let kernel =
        StaticKernel::<KernelSettings<K, E, i32, WORKGROUP_DEFAULT, WORKGROUP_DEFAULT, 1>>::new(
            grid,
        );

    // Build info
    let mut info = build_info(&[&input, &output]);

    // Reduce groups are elements that are aligned along the reduce dim
    let reduce_group_size = input.shape.dims[reduce_dim];
    let n_invocation_per_workgroup = WORKGROUP_DEFAULT * WORKGROUP_DEFAULT;
    let n_reduce_elements_per_thread =
        f32::ceil(reduce_group_size as f32 / n_invocation_per_workgroup as f32) as u32;

    // Add dimension of reduction and how many reduce elements are treated per thread
    info.push(reduce_dim as u32);
    info.push(n_reduce_elements_per_thread);

    let info_handle = input.client.create(bytemuck::cast_slice(&info));

    input.client.execute(
        Box::new(kernel),
        &[&input.handle, &output.handle, &info_handle],
    );

    output
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{
        kernel::reduce::init_reduce_output,
        tests::{ReferenceBackend, TestBackend},
    };
    use burn_tensor::{Distribution, Tensor};

    #[test]
    fn reduction_sum_dim_shared_memory_small() {
        let tensor = Tensor::<TestBackend, 1>::random([700], Distribution::Default);
        let tensor_ref = Tensor::<ReferenceBackend, 1>::from_data(tensor.to_data());
        let reduce_dim = 0;
        let output = init_reduce_output(&tensor.clone().into_primitive(), reduce_dim);

        let val = Tensor::<TestBackend, 1>::from_primitive(sum_dim_shared_memory(
            tensor.into_primitive(),
            output,
            reduce_dim,
        ));
        let val_ref = tensor_ref.sum_dim(reduce_dim);

        val_ref.into_data().assert_approx_eq(&val.into_data(), 3);
    }

    #[test]
    fn reduction_sum_dim_shared_memory_medium() {
        let tensor = Tensor::<TestBackend, 2>::random([6, 1024], Distribution::Default);
        let tensor_ref = Tensor::<ReferenceBackend, 2>::from_data(tensor.to_data());
        let reduce_dim = 1;
        let output = init_reduce_output(&tensor.clone().into_primitive(), reduce_dim);

        let val = Tensor::<TestBackend, 2>::from_primitive(sum_dim_shared_memory(
            tensor.into_primitive(),
            output,
            reduce_dim,
        ));
        let val_ref = tensor_ref.sum_dim(reduce_dim);

        val_ref.into_data().assert_approx_eq(&val.into_data(), 3);
    }

    #[test]
    fn reduction_sum_dim_shared_memory_large() {
        let tensor = Tensor::<TestBackend, 3>::random([4, 1024, 50], Distribution::Default);
        let tensor_ref = Tensor::<ReferenceBackend, 3>::from_data(tensor.to_data());
        let reduce_dim = 2;
        let output = init_reduce_output(&tensor.clone().into_primitive(), reduce_dim);

        let val = Tensor::<TestBackend, 3>::from_primitive(sum_dim_shared_memory(
            tensor.into_primitive(),
            output,
            reduce_dim,
        ));
        let val_ref = tensor_ref.sum_dim(reduce_dim);

        val_ref.into_data().assert_approx_eq(&val.into_data(), 3);
    }
}