1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
use alloc::vec::Vec;
use core::convert::TryInto;
use crate::backend::ADBackend;
use crate::check;
use crate::check::TensorCheck;
use crate::tensor::backend::Backend;
use crate::tensor::stats;
use crate::tensor::{Data, Distribution, Shape};
use crate::Tensor;
impl<const D: usize, B> Tensor<B, D>
where
B: Backend,
{
/// Executes an operation on the tensor and modifies its value.
///
/// # Notes
///
/// This won't necessary reuse the same tensor data/buffer, but it should if there is
/// no other reference pointing to the same tensor.
///
/// Wrapping operations with inplace is not an optimization, it's mainly there if you
/// want to mutate a tensor by using owned operations. A plausible usage would be to
/// update the weights of a mutable model reference.
pub fn inplace<F: FnOnce(Self) -> Self>(&mut self, func: F) {
let mut tensor_owned = Tensor::empty([0; D]);
core::mem::swap(&mut tensor_owned, self);
let mut tensor_new = func(tensor_owned);
core::mem::swap(&mut tensor_new, self);
}
/// Applies element wise exponential operation.
///
/// `y = e^x`
pub fn exp(self) -> Self {
Self::new(B::exp(self.primitive))
}
/// Applies element wise natural log operation *ln*.
///
/// `y = log(x)`
pub fn log(self) -> Self {
Self::new(B::log(self.primitive))
}
/// Applies the natural logarithm of one plus the input tensor, element-wise.
///
/// `y = log(x+1)`
pub fn log1p(self) -> Self {
Self::new(B::log1p(self.primitive))
}
/// Applies the [error function](https://en.wikipedia.org/wiki/Error_function) element wise.
///
/// `y = erf(x)`
pub fn erf(self) -> Self {
Self::new(B::erf(self.primitive))
}
/// Applies element wise power operation.
///
/// `y = x^a`
pub fn powf(self, value: f32) -> Self {
Self::new(B::powf(self.primitive, value))
}
/// Applies element wise root square operation.
pub fn sqrt(self) -> Self {
Self::new(B::sqrt(self.primitive))
}
/// Applies element wise cosine operation.
pub fn cos(self) -> Self {
Self::new(B::cos(self.primitive))
}
/// Applies element wise sine operation.
pub fn sin(self) -> Self {
Self::new(B::sin(self.primitive))
}
/// Applies element wise hyperbolic tangent operation.
pub fn tanh(self) -> Self {
Self::new(B::tanh(self.primitive))
}
/// Create a tensor from floats (f32).
///
/// # Example
///
/// ```rust
/// use burn_tensor::backend::Backend;
/// use burn_tensor::Tensor;
///
/// fn example<B: Backend>() {
/// let _ = Tensor::<B, 1>::from_floats([1.0, 2.0]);
/// let _ = Tensor::<B, 2>::from_floats([[1.0, 2.0], [3.0, 4.0]]);
/// }
/// ```
pub fn from_floats<A: Into<Data<f32, D>>>(floats: A) -> Self {
Self::from_data(floats.into().convert())
}
/// Returns a new tensor with the same shape and device as the current tensor filled with zeros.
pub fn zeros_like(&self) -> Self {
Tensor::new(B::zeros(self.shape(), &self.device()))
}
/// Returns a new tensor with the same shape and device as the current tensor filled with ones.
pub fn ones_like(&self) -> Self {
Tensor::new(B::ones(self.shape(), &self.device()))
}
/// Returns a new tensor with the same shape and device as the current tensor filled random
/// values sampled from the given distribution.
pub fn random_like(&self, distribution: Distribution<B::FloatElem>) -> Self {
Tensor::new(B::random(self.shape(), distribution, &self.device()))
}
/// Create a one hot tensor.
///
/// # Example
///
/// ```rust
/// use burn_tensor::backend::Backend;
/// use burn_tensor::Tensor;
///
/// fn example<B: Backend>() {
/// let one_hot = Tensor::<B, 1>::one_hot(2, 10);
/// println!("{}", one_hot.to_data());
/// // [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
/// }
/// ```
pub fn one_hot(index: usize, num_classes: usize) -> Self {
let mut dims = [1; D];
dims[D - 1] = num_classes;
let shape = Shape::new(dims);
let ranges: Vec<_> = shape.dims.iter().map(|dim| 0..*dim).collect();
let tensor = Tensor::zeros(shape);
let mut ranges: [core::ops::Range<usize>; D] = ranges.try_into().unwrap();
ranges[D - 1] = index..index + 1;
tensor.slice_assign(ranges, Tensor::ones(Shape::new([1; D])))
}
/// Applies the transpose operation.
///
/// On matrix and higher dimension tensor, it swap the last two dimensions.
///
/// # Panics
///
/// If the tensor is of 1 dimension or less.
pub fn transpose(self) -> Self {
Self::new(B::transpose(self.primitive))
}
/// Swap two dimensions.
///
/// # Panics
///
/// If the dimensions exceed the shape of than the tensor.
pub fn swap_dims(self, dim1: usize, dim2: usize) -> Self {
check!(TensorCheck::swap_dims::<D>(dim1, dim2));
Self::new(B::swap_dims(self.primitive, dim1, dim2))
}
/// Applies the matrix multiplication operation.
///
/// `C = AB`
///
/// # Panics
///
/// If the two tensors dont' have a compatible shape.
pub fn matmul(self, other: Self) -> Self {
check!(TensorCheck::matmul(&self, &other));
Self::new(B::matmul(self.primitive, other.primitive))
}
/// Calculate the variance along the given dimension.
pub fn var(self, dim: usize) -> Self {
stats::var(self, dim)
}
/// Calculate the variance along the given dimension without applying the Bessel’s correction.
pub fn var_bias(self, dim: usize) -> Self {
stats::var_bias(self, dim)
}
/// Calculate the variance along the given dimension and also returns the mean.
pub fn var_mean(self, dim: usize) -> (Self, Self) {
let mean = self.clone().mean_dim(dim);
let var = stats::var_with_mean(self, mean.clone(), dim);
(var, mean)
}
/// Calculate the variance along the given dimension without applying the Bessel’s correction and also returns the mean.
pub fn var_mean_bias(self, dim: usize) -> (Self, Self) {
let mean = self.clone().mean_dim(dim);
let var = stats::var_with_mean_bias(self, mean.clone(), dim);
(var, mean)
}
/// Create a random tensor of the given shape where each element is sampled from the given
/// distribution.
pub fn random<S: Into<Shape<D>>>(shape: S, distribution: Distribution<B::FloatElem>) -> Self {
let tensor = B::random(shape.into(), distribution, &B::Device::default());
Self::new(tensor)
}
/// Returns a tensor with full precision based on the selected backend.
pub fn to_full_precision(&self) -> Tensor<B::FullPrecisionBackend, D> {
Tensor::new(B::to_full_precision(&self.primitive))
}
/// Returns a tensor on the selected backend from a full precision tensor.
pub fn from_full_precision(tensor: Tensor<B::FullPrecisionBackend, D>) -> Self {
Self::new(B::from_full_precision(tensor.primitive))
}
/// Detach the current tensor from the autodiff graph.
/// This function does nothing when autodiff is not enabled.
/// This can be used in batchers or elsewere to ensure that previous operations are not
/// considered in the autodiff graph.
pub fn detach(self) -> Self {
Self::new(B::detach(self.primitive))
}
/// Mark the tensor to keep gradients during the backward pass.
/// This function does nothing when autodiff is not enabled.
pub fn require_grad(self) -> Self {
self.set_require_grad(true)
}
/// Returns true if the tensor requires gradients during the backward pass.
pub fn is_require_grad(&self) -> bool {
B::is_require_grad(&self.primitive)
}
/// Mark the tensor as tracked or untracked depending on the require grad argument.
/// When tracked, the gradients will be available after the backward pass.
///
/// This function does nothing when autodiff is not enabled.
pub fn set_require_grad(self, require_grad: bool) -> Self {
Self::new(B::set_require_grad(self.primitive, require_grad))
}
/// Applies the relu function to the tensor.
pub(crate) fn relu(self) -> Self {
Self::new(B::relu(self.primitive))
}
}
impl<const D: usize, B: ADBackend> Tensor<B, D> {
/// Backward pass of the tensor.
pub fn backward(&self) -> B::Gradients {
B::backward::<D>(self.primitive.clone())
}
/// Get the gradients of a tensor if it exist.
///
/// Returns a new reference to the same tensor. Therefore the same grad tensor can
/// be accessed multiple times. If you only need to get the gradients one time,
/// consider using [grad_remove](Tensor::grad_remove) for better performance.
pub fn grad(&self, grads: &B::Gradients) -> Option<Tensor<B::InnerBackend, D>> {
B::grad(&self.primitive, grads).map(Tensor::new)
}
/// Remove the grad tensor from the [grads](ADBackend::Gradients) struct returning the result.
pub fn grad_remove(&self, grads: &mut B::Gradients) -> Option<Tensor<B::InnerBackend, D>> {
B::grad_remove(&self.primitive, grads).map(Tensor::new)
}
/// Returns the inner tensor without the autodiff information.
pub fn inner(self) -> Tensor<B::InnerBackend, D> {
Tensor::new(B::inner(self.primitive))
}
/// Convert a tensor to the autodiff backend.
///
/// # Arguments
///
/// * `inner` - The tensor to convert.
///
/// # Returns
///
/// The tensor converted to the autodiff backend.
pub fn from_inner(inner: Tensor<B::InnerBackend, D>) -> Self {
Self::new(B::from_inner(inner.primitive))
}
}