1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
use alloc::format;
use alloc::string::String;
use alloc::vec;
use alloc::vec::Vec;
use core::{fmt::Debug, ops::Range};

use crate::{
    backend::Backend, check, check::TensorCheck, Bool, Data, Float, Int, Shape, TensorKind,
};

/// A tensor with a given backend, shape and data type.
#[derive(new, Clone, Debug)]
pub struct Tensor<B, const D: usize, K = Float>
where
    B: Backend,
    K: TensorKind<B>,
{
    pub(crate) primitive: K::Primitive<D>,
}

impl<B, const D: usize, K> Tensor<B, D, K>
where
    B: Backend,
    K: BasicOps<B>,
{
    /// Converts the tensor into a primitive tensor.
    pub fn into_primitive(self) -> K::Primitive<D> {
        self.primitive
    }

    /// Converts from a primitive tensor into a tensor.
    pub fn from_primitive(tensor: K::Primitive<D>) -> Self {
        Self::new(tensor)
    }

    /// Create an empty tensor of the given shape.
    pub fn empty<S: Into<Shape<D>>>(shape: S) -> Self {
        Self::empty_device(shape, &B::Device::default())
    }

    /// Create an empty tensor of the given shape.
    pub fn empty_device<S: Into<Shape<D>>>(shape: S, device: &B::Device) -> Self {
        Self::new(K::empty(shape.into(), device))
    }

    /// Returns the dimensions of the current tensor.
    ///
    /// Equivalent to `tensor.shape().dims`.
    pub fn dims(&self) -> [usize; D] {
        Self::shape(self).dims
    }

    /// Returns the shape of the current tensor.
    pub fn shape(&self) -> Shape<D> {
        K::shape(&self.primitive)
    }

    /// Reshape the tensor to have the given shape.
    ///
    /// # Panics
    ///
    /// If the tensor can not be reshape to the given shape.
    pub fn reshape<const D2: usize, S: Into<Shape<D2>>>(self, shape: S) -> Tensor<B, D2, K> {
        let shape = shape.into();
        check!(TensorCheck::reshape(&self.shape(), &shape));

        Tensor::new(K::reshape::<D, D2>(self.primitive, shape))
    }

    /// Flatten the tensor along a given range of dimensions.
    ///
    /// This function collapses the specified range of dimensions into a single dimension,
    /// effectively flattening the tensor in that range.
    ///
    /// # Arguments
    ///
    /// - `start_dim`: The starting dimension of the range to be flattened.
    /// - `end_dim`: The ending dimension of the range to be flattened (inclusive).
    ///
    /// # Type Parameters
    ///
    /// - `D2`: The resulting number of dimensions in the flattened tensor.
    ///
    /// # Returns
    ///
    /// A new `Tensor<B, D2, K>` instance with the specified range of dimensions flattened.
    ///
    /// # Example
    ///
    /// ```rust
    ///
    /// use burn_tensor::backend::Backend;
    /// use burn_tensor::{Tensor, Shape};
    ///
    /// fn example<B: Backend>() {
    ///     let tensor = Tensor::<B, 3>::ones(Shape::new([2, 3, 4]));
    ///
    ///     // Given a 3D tensor with dimensions (2, 3, 4), flatten the dimensions between indices 1 and 2:
    ///     let flattened_tensor: Tensor::<B, 2> = tensor.flatten(1, 2);
    ///
    ///     // The resulting tensor will have dimensions (2, 12).
    ///    println!("{:?}", flattened_tensor.shape());
    /// }
    ///
    /// ```
    pub fn flatten<const D2: usize>(self, start_dim: usize, end_dim: usize) -> Tensor<B, D2, K> {
        check!(TensorCheck::flatten::<D, D2>(start_dim, end_dim));

        let current_dims = self.shape().dims;
        let mut new_dims: [usize; D2] = [0; D2];
        let mut flatten_dims = 1;

        for i in current_dims[start_dim..=end_dim].iter() {
            flatten_dims *= i;
        }

        new_dims[..start_dim].copy_from_slice(&current_dims[..start_dim]);
        new_dims[start_dim] = flatten_dims;
        new_dims[start_dim + 1..].copy_from_slice(&current_dims[end_dim + 1..]);

        Tensor::new(K::reshape::<D, D2>(self.primitive, new_dims.into()))
    }

    /// Squeeze the tensor along the given dimension, removing the specified dimension
    /// of size one, and effectively reducing the rank of the tensor by one.
    ///
    /// # Arguments
    ///
    /// - `dim`: The dimension to be squeezed.
    ///
    /// # Type Parameters
    ///
    ///  - 'D2': The resulting number of dimensions in the squeezed tensor.
    ///
    /// # Returns
    ///
    /// A new `Tensor<B, D2, K>` instance with the specified dimenension removed.
    ///
    /// # Example
    ///
    /// ```rust
    ///
    /// use burn_tensor::backend::Backend;
    /// use burn_tensor::{Tensor, Shape};
    ///
    /// fn example<B: Backend>() {
    ///     let tensor = Tensor::<B, 3>::ones(Shape::new([2, 1, 4]));
    ///
    ///     // Given a 3D tensor with dimensions (2, 1, 4), squeeze the dimension 1
    ///     let squeezed_tensor: Tensor::<B, 2> = tensor.squeeze(1);
    ///
    ///     // Resulting tensor will have dimensions (2, 4)
    ///     println!("{:?}", squeezed_tensor.shape());
    /// }
    /// ```
    pub fn squeeze<const D2: usize>(self, dim: usize) -> Tensor<B, D2, K> {
        check!(TensorCheck::squeeze::<D2>(dim, &self.shape().dims));

        let current_dims = self.shape().dims;
        let mut new_dims: [usize; D2] = [0; D2];

        new_dims[..dim].copy_from_slice(&current_dims[..dim]);
        new_dims[dim..].copy_from_slice(&current_dims[dim + 1..]);

        Tensor::new(K::reshape::<D, D2>(self.primitive, new_dims.into()))
    }

    /// Unsqueeze the current tensor. Create new dimensions to fit the given size.
    ///
    /// # Panics
    ///
    /// If the output size is higher than the current tensor.
    ///
    /// # Example
    ///
    /// ```rust
    /// use burn_tensor::backend::Backend;
    /// use burn_tensor::{Tensor, Shape};
    ///
    /// fn example<B: Backend>() {
    ///     let tensor = Tensor::<B, 2>::ones(Shape::new([3, 3]));
    ///     let tensor = tensor.unsqueeze::<4>();
    ///     println!("{:?}", tensor.shape());
    ///     // Shape { dims: [1, 1, 3, 3] }
    /// }
    /// ```
    pub fn unsqueeze<const D2: usize>(self) -> Tensor<B, D2, K> {
        check!(TensorCheck::unsqueeze::<D, D2>());

        let mut dims = [1; D2];
        let num_ones = D2 - D;
        let shape = self.shape();

        dims[num_ones..(D + num_ones)].copy_from_slice(&shape.dims[..D]);

        let shape = Shape::new(dims);
        self.reshape(shape)
    }

    /// Returns a tensor containing the elements selected from the given ranges.
    ///
    /// # Panics
    ///
    /// If a range exceeds the number of elements on a dimension.
    ///
    /// # Example
    ///
    /// ```rust
    /// use burn_tensor::backend::Backend;
    /// use burn_tensor::{Tensor, Shape};
    ///
    /// fn example<B: Backend>() {
    ///     let tensor = Tensor::<B, 3>::ones(Shape::new([2, 3, 3]));
    ///     let tensor_slices = tensor.slice([0..1, 0..3, 1..2]);
    ///     println!("{:?}", tensor_slices.dims()); // [1, 3, 2]
    ///     
    /// }
    /// ```
    pub fn slice<const D2: usize>(self, ranges: [core::ops::Range<usize>; D2]) -> Self {
        check!(TensorCheck::slice(&self.shape(), &ranges));
        Self::new(K::slice(self.primitive, ranges))
    }

    /// Returns a copy of the current tensor with the selected elements changed to the new ones at
    /// the selected indices.
    ///
    /// # Panics
    ///
    /// - If a range exceeds the number of elements on a dimension.
    /// - If the given values don't match the given ranges.
    ///
    /// # Example
    ///
    /// ```rust
    /// use burn_tensor::backend::Backend;
    /// use burn_tensor::Tensor;
    ///
    /// fn example<B: Backend>() {
    ///     let tensor = Tensor::<B, 3>::ones([2, 3, 3]);
    ///     let values = Tensor::<B, 3>::zeros([1, 1, 1]);
    ///     let tensor_sliced = tensor.slice_assign([0..1, 0..1, 0..1], values);
    ///     println!("{:?}", tensor_sliced.dims()); // [2, 3, 3]
    /// }
    /// ```
    pub fn slice_assign<const D2: usize>(
        self,
        ranges: [core::ops::Range<usize>; D2],
        values: Self,
    ) -> Self {
        check!(TensorCheck::slice_assign(
            &self.shape(),
            &values.shape(),
            &ranges
        ));
        Self::new(K::slice_assign(self.primitive, ranges, values.primitive))
    }

    /// Returns the device of the current tensor.
    pub fn device(&self) -> B::Device {
        K::device(&self.primitive)
    }

    /// Returns a new tensor on the given device.
    pub fn to_device(self, device: &B::Device) -> Self {
        Self::new(K::to_device(self.primitive, device))
    }

    /// Returns the data of the current tensor.
    pub fn into_data(self) -> Data<K::Elem, D> {
        K::into_data(self.primitive)
    }

    /// Returns the data of the current tensor without taking ownership.
    pub fn to_data(&self) -> Data<K::Elem, D> {
        Self::into_data(self.clone())
    }

    /// Create a tensor from the given data.
    pub fn from_data<T>(data: T) -> Self
    where
        T: Into<Data<K::Elem, D>>,
    {
        Self::from_data_device(data, &B::Device::default())
    }

    /// Create a tensor from the given data on the given device.
    pub fn from_data_device<T>(data: T, device: &B::Device) -> Self
    where
        T: Into<Data<K::Elem, D>>,
    {
        Self::new(K::from_data(data.into(), device))
    }

    /// Repeat the tensor along the given dimension.
    ///
    /// # Panics
    ///
    /// If the selected dimension more than one item.
    pub fn repeat(self, dim: usize, times: usize) -> Self {
        Self::new(K::repeat(self.primitive, dim, times))
    }

    /// Applies element wise equal comparison and returns a boolean tensor.
    ///
    /// # Panics
    ///
    /// If the two tensors don't have the same shape.
    pub fn equal(self, other: Self) -> Tensor<B, D, Bool> {
        check!(TensorCheck::binary_ops_ew("Equal", &self, &other));
        K::equal(self.primitive, other.primitive)
    }

    /// Concatenates all tensors into a new one along the given dimension.
    ///
    /// # Panics
    ///
    /// If all tensors don't have the same shape.
    pub fn cat(tensors: Vec<Self>, dim: usize) -> Self {
        check!(TensorCheck::cat(&tensors, dim));

        Self::new(K::cat(
            tensors.into_iter().map(|vector| vector.primitive).collect(),
            dim,
        ))
    }
}

impl<B, const D: usize, K> Tensor<B, D, K>
where
    B: Backend,
    K: BasicOps<B>,
    <K as BasicOps<B>>::Elem: Debug,
{
    /// Recursively formats the tensor data for display and appends it to the provided accumulator string.
    ///
    /// This function is designed to work with tensors of any dimensionality.
    /// It traverses the tensor dimensions recursively, converting the elements
    /// to strings and appending them to the accumulator string with the
    /// appropriate formatting.
    ///
    /// # Arguments
    ///
    /// * `acc` - A mutable reference to a `String` used as an accumulator for the formatted output.
    /// * `depth` - The current depth of the tensor dimensions being processed.
    /// * `multi_index` - A mutable slice of `usize` representing the current indices in each dimension.
    fn display_recursive(&self, acc: &mut String, depth: usize, multi_index: &mut [usize]) {
        if depth == 0 {
            acc.push('[');
        }

        if depth == self.dims().len() - 1 {
            // if we are at the innermost dimension, just push its elements into the accumulator
            for i in 0..self.dims()[depth] {
                if i > 0 {
                    acc.push_str(", ");
                }
                multi_index[depth] = i;
                let range: [core::ops::Range<usize>; D] =
                    core::array::from_fn(|i| multi_index[i]..multi_index[i] + 1);
                let elem = &self.clone().slice(range).to_data().value[0];
                acc.push_str(&format!("{elem:?}"));
            }
        } else {
            // otherwise, iterate through the current dimension and recursively display the inner tensors
            for i in 0..self.dims()[depth] {
                if i > 0 {
                    acc.push_str(", ");
                }
                acc.push('[');
                multi_index[depth] = i;
                self.display_recursive(acc, depth + 1, multi_index);
                acc.push(']');
            }
        }

        if depth == 0 {
            acc.push(']');
        }
    }
}

/// Pretty print tensors
impl<B, const D: usize, K> core::fmt::Display for Tensor<B, D, K>
where
    B: Backend,
    B::IntElem: core::fmt::Display,
    K: BasicOps<B>,
    <K as BasicOps<B>>::Elem: Debug,
{
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        writeln!(f, "Tensor {{")?;
        write!(f, "  data: ")?;

        let mut acc = String::new();
        let mut multi_index = vec![0; D];
        self.display_recursive(&mut acc, 0, &mut multi_index);
        write!(f, "{acc}")?;
        writeln!(f, ",")?;
        writeln!(f, "  shape:  {:?},", self.dims())?;
        writeln!(f, "  device:  {:?},", self.device())?;
        writeln!(f, "  backend:  {:?},", B::name())?;
        writeln!(f, "  kind:  {:?},", K::name())?;
        writeln!(f, "  dtype:  {:?},", K::elem_type_name())?;
        write!(f, "}}")
    }
}

/// Transpose marker (zero-size type). Used to sugar the transpose of a tensor, e.g.
/// ```rust
/// use burn_tensor::backend::Backend;
/// use burn_tensor::{Tensor, T};
///
/// fn example<B: Backend>() {
///     let tensor = Tensor::<B, 2>::from_floats([[1.0, 2.0], [3.0, 4.0]]);
///     let transposed = tensor^T;
/// }
/// ```
pub struct T;

impl<B: Backend, const D: usize> core::ops::BitXor<T> for Tensor<B, D> {
    type Output = Self;
    fn bitxor(self, _: T) -> Self::Output {
        self.transpose()
    }
}

/// Trait that list all operations that can be applied on all tensors.
///
/// # Warnings
///
/// This is an internal trait, use the public API provided by [tensor struct](Tensor).
pub trait BasicOps<B: Backend>: TensorKind<B> {
    /// The type of the tensor elements.
    type Elem: 'static;

    /// Creates an empty tensor with the given shape.
    ///
    /// # Arguments
    ///
    /// * `shape` - The shape of the tensor.
    /// * `device` - The device on which the tensor will be allocated.
    ///
    /// # Returns
    ///
    /// The empty tensor.
    ///
    /// # Remarks
    ///
    /// This is a low-level function used internally by the library to call different backend functions
    /// with static dispatch. It is not designed for direct usage by users, and not recommended to import
    /// or use this function directly.
    ///
    /// For creating empty tensors, users should prefer the [Tensor::empty](Tensor::empty) function,
    /// which is more high-level and designed for public use.
    fn empty<const D: usize>(shape: Shape<D>, device: &B::Device) -> Self::Primitive<D>;

    /// Returns the shape of the tensor.
    ///
    /// # Arguments
    ///
    /// * `tensor` - The tensor.
    ///
    /// # Returns
    ///
    /// The shape of the tensor.
    ///
    /// # Remarks
    ///
    /// This is a low-level function used internally by the library to call different backend functions
    /// with static dispatch. It is not designed for direct usage by users, and not recommended to import
    /// or use this function directly.
    ///
    /// For getting the shape of a tensor, users should prefer the [Tensor::shape](Tensor::shape) function,
    /// which is more high-level and designed for public use.
    fn shape<const D: usize>(tensor: &Self::Primitive<D>) -> Shape<D>;

    /// Reshapes the tensor.
    ///
    /// # Arguments
    ///
    /// * `tensor` - The tensor.
    /// * `shape` - The new shape of the tensor.
    ///
    /// # Returns
    ///
    /// The reshaped tensor.
    ///
    /// # Remarks
    ///
    /// This is a low-level function used internally by the library to call different backend functions
    /// with static dispatch. It is not designed for direct usage by users, and not recommended to import
    /// or use this function directly.
    ///
    /// For reshaping a tensor, users should prefer the [Tensor::reshape](Tensor::reshape) function,
    /// which is more high-level and designed for public use.
    fn reshape<const D1: usize, const D2: usize>(
        tensor: Self::Primitive<D1>,
        shape: Shape<D2>,
    ) -> Self::Primitive<D2>;

    ///  Select tensor elements corresponding for the given ranges.
    ///
    /// # Arguments
    ///
    /// * `tensor` - The tensor.
    /// * `ranges` - The ranges of the elements to select.
    ///
    /// # Returns
    ///
    /// The selected elements.
    ///
    /// # Remarks
    ///
    /// This is a low-level function used internally by the library to call different backend functions
    /// with static dispatch. It is not designed for direct usage by users, and not recommended to import
    /// or use this function directly.
    ///
    /// For selecting elements of a tensor, users should prefer the [Tensor::slice](Tensor::slice) function,
    /// which is more high-level and designed for public use.
    fn slice<const D1: usize, const D2: usize>(
        tensor: Self::Primitive<D1>,
        range: [Range<usize>; D2],
    ) -> Self::Primitive<D1>;

    ///  Assigns the given value to the tensor elements corresponding for the given ranges.
    ///
    /// # Arguments
    ///
    /// * `tensor` - The tensor.
    /// * `ranges` - The ranges of the elements to select.
    /// * `value` - The value to assign.
    ///
    /// # Returns
    ///
    /// The tensor with the assigned values.
    ///
    /// # Remarks
    ///
    /// This is a low-level function used internally by the library to call different backend functions
    /// with static dispatch. It is not designed for direct usage by users, and not recommended to import
    /// or use this function directly.
    ///
    /// For assigning values to elements of a tensor, users should prefer the [Tensor::slice_assign](Tensor::slice_assign) function,
    /// which is more high-level and designed for public use.
    fn slice_assign<const D1: usize, const D2: usize>(
        tensor: Self::Primitive<D1>,
        ranges: [Range<usize>; D2],
        value: Self::Primitive<D1>,
    ) -> Self::Primitive<D1>;

    /// Returns the device on which the tensor is allocated.
    ///
    /// # Arguments
    ///
    /// * `tensor` - The tensor.
    ///
    /// # Returns
    ///
    /// The device on which the tensor is allocated.
    ///
    /// # Remarks
    ///
    /// This is a low-level function used internally by the library to call different backend functions
    /// with static dispatch. It is not designed for direct usage by users, and not recommended to import
    /// or use this function directly.
    ///
    /// For getting the device of a tensor, users should prefer the [Tensor::device](Tensor::device) function,
    /// which is more high-level and designed for public use.
    fn device<const D: usize>(tensor: &Self::Primitive<D>) -> B::Device;

    /// Moves the tensor to the given device.
    ///
    /// # Arguments
    ///
    /// * `tensor` - The tensor.
    /// * `device` - The device on which the tensor will be moved.
    ///
    /// # Returns
    ///
    /// The tensor on the given device.
    ///
    /// # Remarks
    ///
    /// This is a low-level function used internally by the library to call different backend functions
    /// with static dispatch. It is not designed for direct usage by users, and not recommended to import
    /// or use this function directly.
    ///
    /// For moving a tensor to a device, users should prefer the [Tensor::to_device](Tensor::to_device) function,
    /// which is more high-level and designed for public use.
    fn to_device<const D: usize>(
        tensor: Self::Primitive<D>,
        device: &B::Device,
    ) -> Self::Primitive<D>;

    /// Extracts the data from the tensor.
    ///
    /// # Arguments
    ///
    /// * `tensor` - The tensor.
    ///
    /// # Returns
    ///
    /// The data of the tensor.
    ///
    /// # Remarks
    ///
    /// This is a low-level function used internally by the library to call different backend functions
    /// with static dispatch. It is not designed for direct usage by users, and not recommended to import
    /// or use this function directly.
    ///
    /// For extracting the data of a tensor, users should prefer the [Tensor::into_data](Tensor::into_data) function,
    /// which is more high-level and designed for public use.
    fn into_data<const D: usize>(tensor: Self::Primitive<D>) -> Data<Self::Elem, D>;

    /// Creates a tensor from the given data.
    ///
    /// # Arguments
    ///
    /// * `data` - The data of the tensor.
    /// * `device` - The device on which the tensor will be allocated.
    ///
    /// # Returns
    ///
    /// The tensor.
    ///
    /// # Remarks
    ///
    /// This is a low-level function used internally by the library to call different backend functions
    /// with static dispatch. It is not designed for direct usage by users, and not recommended to import
    /// or use this function directly.
    ///
    /// For creating a tensor from data, users should prefer the [Tensor::from_data](Tensor::from_data) function,
    /// which is more high-level and designed for public use.
    fn from_data<const D: usize>(
        data: Data<Self::Elem, D>,
        device: &B::Device,
    ) -> Self::Primitive<D>;

    /// Repeat the tensor along the given dimension.
    ///
    /// # Arguments
    ///
    /// * `tensor` - The tensor.
    /// * `dim` - The dimension along which the tensor will be repeated.
    /// * `times` - The number of times the tensor will be repeated.
    ///
    /// # Returns
    ///
    /// The repeated tensor.
    ///
    /// # Remarks
    ///
    /// This is a low-level function used internally by the library to call different backend functions
    /// with static dispatch. It is not designed for direct usage by users, and not recommended to import
    /// or use this function directly.
    ///
    /// For repeating a tensor, users should prefer the [Tensor::repeat](Tensor::repeat) function,
    /// which is more high-level and designed for public use.
    fn repeat<const D: usize>(
        tensor: Self::Primitive<D>,
        dim: usize,
        times: usize,
    ) -> Self::Primitive<D>;

    /// Concatenates the given tensors along the given dimension.
    ///
    /// # Arguments
    ///
    /// * `vectors` - The tensors to concatenate.
    /// * `dim` - The dimension along which the tensors will be concatenated.
    ///
    /// # Returns
    ///
    /// The concatenated tensor.
    ///
    /// # Remarks
    ///
    /// This is a low-level function used internally by the library to call different backend functions
    /// with static dispatch. It is not designed for direct usage by users, and not recommended to import
    /// or use this function directly.
    ///
    /// For concatenating tensors, users should prefer the [Tensor::cat](Tensor::cat) function,
    /// which is more high-level and designed for public use.
    fn cat<const D: usize>(vectors: Vec<Self::Primitive<D>>, dim: usize) -> Self::Primitive<D>;

    /// Equates the given tensors.
    ///
    /// # Arguments
    ///
    /// * `lhs` - The left hand side tensor.
    /// * `rhs` - The right hand side tensor.
    ///
    /// # Returns
    ///
    /// The tensor of booleans indicating whether the corresponding elements are equal.
    ///
    /// # Remarks
    ///
    /// This is a low-level function used internally by the library to call different backend functions
    /// with static dispatch. It is not designed for direct usage by users, and not recommended to import
    /// or use this function directly.
    ///
    /// For equating tensors, users should prefer the [Tensor::equal](Tensor::equal) function,
    /// which is more high-level and designed for public use.
    fn equal<const D: usize>(
        lhs: Self::Primitive<D>,
        rhs: Self::Primitive<D>,
    ) -> Tensor<B, D, Bool>;

    /// Returns the name of the element type.
    fn elem_type_name() -> &'static str {
        core::any::type_name::<Self::Elem>()
    }
}

impl<B: Backend> BasicOps<B> for Float {
    type Elem = B::FloatElem;

    fn empty<const D: usize>(shape: Shape<D>, device: &B::Device) -> Self::Primitive<D> {
        B::empty(shape, device)
    }
    fn shape<const D: usize>(tensor: &Self::Primitive<D>) -> Shape<D> {
        B::shape(tensor)
    }

    fn reshape<const D1: usize, const D2: usize>(
        tensor: Self::Primitive<D1>,
        shape: Shape<D2>,
    ) -> Self::Primitive<D2> {
        B::reshape(tensor, shape)
    }

    fn slice<const D1: usize, const D2: usize>(
        tensor: Self::Primitive<D1>,
        ranges: [Range<usize>; D2],
    ) -> Self::Primitive<D1> {
        B::slice(tensor, ranges)
    }

    fn slice_assign<const D1: usize, const D2: usize>(
        tensor: Self::Primitive<D1>,
        ranges: [Range<usize>; D2],
        value: Self::Primitive<D1>,
    ) -> Self::Primitive<D1> {
        B::slice_assign(tensor, ranges, value)
    }

    fn device<const D: usize>(tensor: &Self::Primitive<D>) -> <B as Backend>::Device {
        B::device(tensor)
    }

    fn to_device<const D: usize>(
        tensor: Self::Primitive<D>,
        device: &<B as Backend>::Device,
    ) -> Self::Primitive<D> {
        B::to_device(tensor, device)
    }

    fn into_data<const D: usize>(tensor: Self::Primitive<D>) -> Data<Self::Elem, D> {
        B::into_data(tensor)
    }

    fn from_data<const D: usize>(
        data: Data<Self::Elem, D>,
        device: &B::Device,
    ) -> Self::Primitive<D> {
        B::from_data(data, device)
    }

    fn repeat<const D: usize>(
        tensor: Self::Primitive<D>,
        dim: usize,
        times: usize,
    ) -> Self::Primitive<D> {
        B::repeat(tensor, dim, times)
    }

    fn cat<const D: usize>(vectors: Vec<Self::Primitive<D>>, dim: usize) -> Self::Primitive<D> {
        B::cat(vectors, dim)
    }

    fn equal<const D: usize>(
        lhs: Self::Primitive<D>,
        rhs: Self::Primitive<D>,
    ) -> Tensor<B, D, Bool> {
        Tensor::new(B::equal(lhs, rhs))
    }
}

impl<B: Backend> BasicOps<B> for Int {
    type Elem = B::IntElem;

    fn empty<const D: usize>(shape: Shape<D>, device: &B::Device) -> Self::Primitive<D> {
        B::int_empty(shape, device)
    }
    fn shape<const D: usize>(tensor: &Self::Primitive<D>) -> Shape<D> {
        B::int_shape(tensor)
    }

    fn reshape<const D1: usize, const D2: usize>(
        tensor: Self::Primitive<D1>,
        shape: Shape<D2>,
    ) -> Self::Primitive<D2> {
        B::int_reshape(tensor, shape)
    }

    fn slice<const D1: usize, const D2: usize>(
        tensor: Self::Primitive<D1>,
        ranges: [Range<usize>; D2],
    ) -> Self::Primitive<D1> {
        B::int_slice(tensor, ranges)
    }

    fn slice_assign<const D1: usize, const D2: usize>(
        tensor: Self::Primitive<D1>,
        ranges: [Range<usize>; D2],
        value: Self::Primitive<D1>,
    ) -> Self::Primitive<D1> {
        B::int_slice_assign(tensor, ranges, value)
    }

    fn device<const D: usize>(tensor: &Self::Primitive<D>) -> <B as Backend>::Device {
        B::int_device(tensor)
    }

    fn to_device<const D: usize>(
        tensor: Self::Primitive<D>,
        device: &<B as Backend>::Device,
    ) -> Self::Primitive<D> {
        B::int_to_device(tensor, device)
    }

    fn into_data<const D: usize>(tensor: Self::Primitive<D>) -> Data<Self::Elem, D> {
        B::int_into_data(tensor)
    }

    fn from_data<const D: usize>(
        data: Data<Self::Elem, D>,
        device: &B::Device,
    ) -> Self::Primitive<D> {
        B::int_from_data(data, device)
    }

    fn repeat<const D: usize>(
        tensor: Self::Primitive<D>,
        dim: usize,
        times: usize,
    ) -> Self::Primitive<D> {
        B::int_repeat(tensor, dim, times)
    }

    fn equal<const D: usize>(
        lhs: Self::Primitive<D>,
        rhs: Self::Primitive<D>,
    ) -> Tensor<B, D, Bool> {
        Tensor::new(B::int_equal(lhs, rhs))
    }

    fn cat<const D: usize>(vectors: Vec<Self::Primitive<D>>, dim: usize) -> Self::Primitive<D> {
        B::int_cat(vectors, dim)
    }
}

impl<B: Backend> BasicOps<B> for Bool {
    type Elem = bool;

    fn empty<const D: usize>(shape: Shape<D>, device: &B::Device) -> Self::Primitive<D> {
        B::bool_empty(shape, device)
    }
    fn shape<const D: usize>(tensor: &Self::Primitive<D>) -> Shape<D> {
        B::bool_shape(tensor)
    }

    fn reshape<const D1: usize, const D2: usize>(
        tensor: Self::Primitive<D1>,
        shape: Shape<D2>,
    ) -> Self::Primitive<D2> {
        B::bool_reshape(tensor, shape)
    }

    fn slice<const D1: usize, const D2: usize>(
        tensor: Self::Primitive<D1>,
        ranges: [Range<usize>; D2],
    ) -> Self::Primitive<D1> {
        B::bool_slice(tensor, ranges)
    }

    fn slice_assign<const D1: usize, const D2: usize>(
        tensor: Self::Primitive<D1>,
        ranges: [Range<usize>; D2],
        value: Self::Primitive<D1>,
    ) -> Self::Primitive<D1> {
        B::bool_slice_assign(tensor, ranges, value)
    }

    fn device<const D: usize>(tensor: &Self::Primitive<D>) -> <B as Backend>::Device {
        B::bool_device(tensor)
    }

    fn to_device<const D: usize>(
        tensor: Self::Primitive<D>,
        device: &<B as Backend>::Device,
    ) -> Self::Primitive<D> {
        B::bool_to_device(tensor, device)
    }

    fn into_data<const D: usize>(tensor: Self::Primitive<D>) -> Data<Self::Elem, D> {
        B::bool_into_data(tensor)
    }

    fn from_data<const D: usize>(
        data: Data<Self::Elem, D>,
        device: &B::Device,
    ) -> Self::Primitive<D> {
        B::bool_from_data(data, device)
    }

    fn repeat<const D: usize>(
        tensor: Self::Primitive<D>,
        dim: usize,
        times: usize,
    ) -> Self::Primitive<D> {
        B::bool_repeat(tensor, dim, times)
    }

    fn equal<const D: usize>(
        lhs: Self::Primitive<D>,
        rhs: Self::Primitive<D>,
    ) -> Tensor<B, D, Bool> {
        Tensor::new(B::bool_equal(lhs, rhs))
    }

    fn cat<const D: usize>(vectors: Vec<Self::Primitive<D>>, dim: usize) -> Self::Primitive<D> {
        B::bool_cat(vectors, dim)
    }
}