burn_tensor/tensor/ops/activation.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
use crate::tensor::ops::tensor::FloatTensorOps;
use crate::{backend::Backend, ElementConversion};
use core::f64::consts::SQRT_2;
use super::{FloatTensor, FullPrecisionBackend};
/// Activation function operations.
///
/// This trait let backend implementations override activation functions for better performance.
pub trait ActivationOps<B: Backend> {
/// Applies the LeakyReLU activation function.
///
/// # Arguments
///
/// * `tensor` - The tensor.
/// * `negative_slope` - The negative_slope value that values smaller than 0 are multiplied with.
///
/// # Returns
///
/// The output tensor.
fn leaky_relu(tensor: FloatTensor<B>, negative_slope: super::FloatElem<B>) -> FloatTensor<B> {
let mask = B::float_lower_elem(tensor.clone(), 0.elem());
let scaled_tensor = B::float_mul_scalar(tensor.clone(), negative_slope.elem());
// Update the tensor where the values are `< 0` by `tensor * negative_slope`.
B::float_mask_where(tensor, mask, scaled_tensor)
}
/// Applies the ReLU activation function.
///
/// # Arguments
///
/// * `tensor` - The tensor.
///
/// # Returns
///
/// The output tensor.
fn relu(tensor: FloatTensor<B>) -> FloatTensor<B> {
let mask = B::float_lower_equal_elem(tensor.clone(), 0.elem());
B::float_mask_fill(tensor, mask, 0.elem())
}
/// Applies the ReLU activation function backward.
///
/// # Arguments
///
/// * `output` - The output tensor.
///
/// # Returns
///
/// The gradient.
fn relu_backward(output: FloatTensor<B>, grad: FloatTensor<B>) -> FloatTensor<B> {
let mask = B::float_lower_equal_elem(output, 0.elem());
B::float_mask_fill(grad, mask, 0.elem())
}
/// Applies the Gelu activation function.
///
/// # Arguments
///
/// * `tensor` - The tensor.
///
/// # Returns
///
/// The output tensor.
fn gelu(tensor: FloatTensor<B>) -> FloatTensor<B> {
let x = B::float_div_scalar(tensor.clone(), SQRT_2.elem());
let x = B::float_erf(x);
let x = B::float_add_scalar(x, 1i32.elem());
let x = B::float_mul(tensor, x);
B::float_div_scalar(x, 2i32.elem())
}
/// Applies the PReLu activation function.
/// # Arguments
/// * `tensor` - The input tensor
/// * `alpha` - The weight tensor
fn prelu(tensor: FloatTensor<B>, alpha: FloatTensor<B>) -> FloatTensor<B> {
let mask = B::float_lower_elem(tensor.clone(), 0.elem());
let scaled_tensor = B::float_mul(tensor.clone(), alpha);
B::float_mask_where(tensor, mask, scaled_tensor)
}
/// Applies the Gelu activation function backward.
///
/// # Arguments
///
/// * `x` - The tensor.
/// * `grad` - The gradient.
///
/// # Returns
///
/// The output tensor.
fn gelu_backward(x: FloatTensor<B>, grad: FloatTensor<B>) -> FloatTensor<B> {
// Derivative of the approximate gelu implementation based on tanh.
let constant_1 = 0.0356774;
let constant_2 = 0.797885;
let constant_3 = 0.0535161;
let constant_4 = 0.398942;
let x3 = B::float_powf_scalar(x.clone(), 3.0);
let c1 = B::float_mul_scalar(x3.clone(), constant_1.elem());
let c2 = B::float_mul_scalar(x.clone(), constant_2.elem());
let c3 = B::float_mul_scalar(x3, constant_3.elem());
let c4 = B::float_mul_scalar(x, constant_4.elem());
let inner1 = B::float_add(c1, c2);
let inner2 = B::float_add(c3, c4);
let tanh = B::float_tanh(inner1);
let sech = B::float_powf_scalar(tanh.clone(), 2.0);
let sech = B::float_neg(sech);
let sech = B::float_add_scalar(sech, 1.elem());
let y1 = B::float_mul_scalar(tanh, 0.5.elem());
let y2 = B::float_mul(inner2, sech);
let y2 = B::float_add_scalar(y2, 0.5.elem());
let y = B::float_add(y1, y2);
B::float_mul(y, grad)
}
/// Applies the Sigmoid activation function.
///
/// # Arguments
///
/// * `tensor` - The tensor.
///
/// # Returns
///
/// The output tensor.
fn sigmoid(tensor: FloatTensor<B>) -> FloatTensor<B> {
let tensor_full = B::float_into_full_precision(tensor);
let tensor_tmp =
FullPrecisionBackend::<B>::float_exp(FullPrecisionBackend::<B>::float_neg(
FullPrecisionBackend::<B>::float_log(FullPrecisionBackend::<B>::float_add_scalar(
FullPrecisionBackend::<B>::float_exp(FullPrecisionBackend::<B>::float_neg(
tensor_full,
)),
1.0.elem(),
)),
));
B::float_from_full_precision(tensor_tmp)
}
/// Applies the Sigmoid activation function backward.
///
/// # Arguments
///
/// * `output` - The output tensor of the sigmoid function.
/// * `grad` - The gradient.
///
/// # Returns
///
/// The output tensor.
fn sigmoid_backward(output: FloatTensor<B>, grad: FloatTensor<B>) -> FloatTensor<B> {
let value = B::float_mul(
output.clone(),
B::float_add_scalar(B::float_neg(output), 1.0.elem()),
);
B::float_mul(value, grad)
}
/// Applies the hard Sigmoid activation function.
///
/// # Arguments
///
/// * `tensor` - The tensor.
/// * `alpha` - The alpha value that the tensor is multiplied with.
/// * `beta` - The beta value that is added to the tensor
///
/// # Returns
///
/// The output tensor.
fn hard_sigmoid(
tensor: FloatTensor<B>,
alpha: super::FloatElem<B>,
beta: super::FloatElem<B>,
) -> FloatTensor<B> {
let tensor_full = B::float_into_full_precision(tensor);
let tensor_tmp = FullPrecisionBackend::<B>::float_clamp(
FullPrecisionBackend::<B>::float_add_scalar(
FullPrecisionBackend::<B>::float_mul_scalar(tensor_full, alpha.elem()),
beta.elem(),
),
0.0.elem(),
1.0.elem(),
);
B::float_from_full_precision(tensor_tmp)
}
/// Applies the LogSigmoid activation function.
///
/// # Arguments
///
/// * `tensor` - The tensor.
///
/// # Returns
///
/// The output tensor.
fn log_sigmoid(tensor: FloatTensor<B>) -> FloatTensor<B> {
// To avoid overflow, we use the log-sum-exp trick.
//
// ```ignore
// log(sigmoid(x)) = log(1/(1 + exp(-x)))
// = log(1) - log(1 + exp(-x))
// = -log(1 + exp(-x))
// = -log(exp(0) + exp(-x))
// ```
// The `exp(t)` of even a moderate-magnitude positive number can be astronomically huge, so we
// subtract the `max(t, 0)` of each value (where `t = -x` in this case). This results in the
// following equivalence:
// ```ignore
// log(sigmoid(x)) = -(max(-x, 0) + log(exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
// ```
//
// This extends the range of values for which we obtain accurate results.
// max(-x, 0)
let tensor_neg = B::float_neg(tensor);
let mask = B::float_lower_elem(tensor_neg.clone(), 0.elem());
let max_elem = B::float_mask_fill(tensor_neg.clone(), mask, 0.elem());
let max_elem_neg = B::float_neg(max_elem.clone());
// z = exp(-max(-x, 0)) + exp(-x - max(-x, 0))
let z = B::float_add(
B::float_exp(max_elem_neg.clone()),
B::float_exp(B::float_sub(tensor_neg, max_elem.clone())),
);
// -max(-x, 0) - log(-z)
B::float_sub(max_elem_neg, B::float_log(z))
}
/// Applies the LogSigmoid activation function backward.
///
/// # Arguments
///
/// * `x` - The input tensor.
/// * `grad` - The gradient.
///
/// # Returns
///
/// The output gradient.
fn log_sigmoid_backward(x: FloatTensor<B>, grad: FloatTensor<B>) -> FloatTensor<B> {
// Derivative of -max(-x, 0) - log(exp(-max(-x, 0)) - exp(-x - max(-x, 0)))) is
// -max_derive - (-max_derive * exp(-max(-x, 0)) + (-1 - max_derive) * exp(-x - max(-x, 0))) / z
// where z = exp(-max(-x, 0)) + exp(-x - max(-x, 0))
//
// This simplifies to:
// -max_derive - (z-1)/z if x is >= 0
// -max_derive + (z-1)/z if x is < 0
let shape = B::float_shape(&x);
let device = B::float_device(&x);
// max(-x, 0)
let x_neg = B::float_neg(x);
let mask = B::float_lower_elem(x_neg.clone(), 0.elem()); // -x < 0 or x >= 0
let max_elem = B::float_mask_fill(x_neg.clone(), mask.clone(), 0.elem());
// z = exp(-max(-x, 0)) + exp(-x - max(-x, 0))
let z = B::float_add(
B::float_exp(B::float_neg(max_elem.clone())),
B::float_exp(B::float_sub(x_neg, max_elem)),
);
// Derivative of max(-x, 0) is 1 if x < 0 or 0 if x >= 0
let ones = B::float_ones(shape, &device);
let max_derive = B::float_mask_fill(ones.clone(), mask.clone(), 0.elem());
let sign = B::float_mask_fill(ones.clone(), mask, (-1).elem());
// grad * (max_derive - sign * (1 - (1 / z)))
B::float_mul(
grad,
B::float_sub(
max_derive,
B::float_mul(sign, B::float_sub(ones, B::float_recip(z))),
),
)
}
}