1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
use core::cmp::Ordering;
use crate::{
backend::Backend,
ops::{IntElem, IntTensor},
BasicOps, Device, Element, ElementComparison, ElementConversion, TensorData, TensorKind,
};
use alloc::vec::Vec;
use burn_common::reader::try_read_sync;
/// Sort the elements of the input `tensor` by value along a given dimension.
///
/// This sort is unstable (i.e., may reorder equal elements).
///
/// # Arguments
///
/// * `tensor` - The input tensor.
/// * `dim` - The axis along which to sort.
/// * `descending` - The sorting order.
///
/// # Returns
///
/// A tensor with the same shape as the input tensor, where the elements are sorted by value.
///
/// # Remarks
///
/// This is a fallback solution that used only when the backend doesn't have the corresponding implementation.
/// Ideally, it is supposed to be implemented by the backend and the backend implementation will be resolved
/// by static dispatch. It is not designed for direct usage by users, and not recommended to import
/// or use this function directly.
pub fn sort<B: Backend, const D: usize, K: TensorKind<B> + BasicOps<B>>(
tensor: K::Primitive<D>,
dim: usize,
descending: bool,
) -> K::Primitive<D>
where
<K as BasicOps<B>>::Elem: Element,
{
let device = K::device(&tensor);
let data = try_read_sync(K::into_data_async(tensor)).expect("Failed to synchonously read tensor data. This operation is not supported until this backend has a GPU sorting implementation.");
sort_data::<B, D, K>(data, dim, &device, descending)
}
pub fn sort_data<B: Backend, const D: usize, K: TensorKind<B> + BasicOps<B>>(
mut data: TensorData,
dim: usize,
device: &Device<B>,
descending: bool,
) -> K::Primitive<D>
where
<K as BasicOps<B>>::Elem: Element,
{
let dims = data.shape.clone();
let data_slice = data.as_mut_slice().unwrap();
if D == 1 {
// 1D sort
data_slice.sort_unstable_by(|&a, &b| compare(&a, &b, descending));
} else {
sort_slice::<B, D, K>(data_slice, &dims, dim, None, false, descending);
}
K::from_data(data, device)
}
/// Sort the elements of the input `tensor` by value along a given dimension.
///
/// This sort is unstable (i.e., may reorder equal elements).
///
/// # Arguments
///
/// * `tensor` - The input tensor.
/// * `dim` - The axis along which to sort.
/// * `descending` - The sorting order.
///
/// # Returns
///
/// A tensor with the same shape as the input tensor and corresponding indices, where
/// the elements are sorted by value and the indices map back to the original input tensor.
///
/// # Remarks
///
/// This is a fallback solution that used only when the backend doesn't have the corresponding implementation.
/// Ideally, it is supposed to be implemented by the backend and the backend implementation will be resolved
/// by static dispatch. It is not designed for direct usage by users, and not recommended to import
/// or use this function directly.
pub fn sort_with_indices<B: Backend, const D: usize, K: TensorKind<B> + BasicOps<B>>(
tensor: K::Primitive<D>,
dim: usize,
descending: bool,
) -> (K::Primitive<D>, IntTensor<B, D>)
where
<K as BasicOps<B>>::Elem: Element,
{
let device = K::device(&tensor);
let data = try_read_sync(K::into_data_async(tensor)).expect("Failed to synchonously read tensor data. This operation is not supported until this backend has a GPU sorting implementation.");
sort_data_with_indices::<B, D, K>(data, dim, &device, descending)
}
fn sort_data_with_indices<B: Backend, const D: usize, K: TensorKind<B> + BasicOps<B>>(
mut data: TensorData,
dim: usize,
device: &Device<B>,
descending: bool,
) -> (K::Primitive<D>, IntTensor<B, D>)
where
<K as BasicOps<B>>::Elem: Element,
{
let dims = data.shape.clone();
let mut indices_data = dim_indices::<B, D>(&dims, dim);
let data_slice = data.as_mut_slice().unwrap();
if D == 1 {
// 1D sort
indices_data.sort_unstable_by(|&a, &b| {
compare(
&data_slice[a.elem::<i64>() as usize],
&data_slice[b.elem::<i64>() as usize],
descending,
)
});
// Permute data in-place by the sorted indices
let mut indices = indices_data
.clone()
.iter()
.map(|i| i.elem::<i64>() as usize)
.collect::<Vec<_>>();
for idx in 0..indices.len() {
if indices[idx] != idx {
let mut current_idx = idx;
loop {
let target_idx = indices[current_idx];
indices[current_idx] = current_idx;
if indices[target_idx] == target_idx {
// correct position
break;
}
// Permute data by indices
data_slice.swap(current_idx, target_idx);
current_idx = target_idx;
}
}
}
} else {
sort_slice::<B, D, K>(
data_slice,
&dims,
dim,
Some(&mut indices_data),
true,
descending,
);
}
let shape = data.shape.clone();
(
K::from_data(data, device),
B::int_from_data(TensorData::new(indices_data, shape), device),
)
}
/// Returns the indices that sort the elements of the input `tensor` along a given dimension.
///
/// This sort is unstable (i.e., may reorder equal elements).
///
/// # Arguments
///
/// * `tensor` - The input tensor.
/// * `dim` - The axis along which to sort.
/// * `descending` - The sorting order.
///
/// # Returns
///
/// A tensor with the same shape as the input tensor the indices map back to the original input tensor.
///
/// # Remarks
///
/// This is a fallback solution that used only when the backend doesn't have the corresponding implementation.
/// Ideally, it is supposed to be implemented by the backend and the backend implementation will be resolved
/// by static dispatch. It is not designed for direct usage by users, and not recommended to import
/// or use this function directly.
pub fn argsort<B: Backend, const D: usize, K: TensorKind<B> + BasicOps<B>>(
tensor: K::Primitive<D>,
dim: usize,
descending: bool,
) -> IntTensor<B, D>
where
<K as BasicOps<B>>::Elem: Element,
{
let device = K::device(&tensor);
let data = try_read_sync(K::into_data_async(tensor)).expect("Failed to synchonously read tensor data. This operation is not supported until this backend has a GPU sorting implementation.");
argsort_data::<B, D, K>(data, dim, &device, descending)
}
fn argsort_data<B: Backend, const D: usize, K: TensorKind<B> + BasicOps<B>>(
mut data: TensorData,
dim: usize,
device: &Device<B>,
descending: bool,
) -> IntTensor<B, D>
where
<K as BasicOps<B>>::Elem: Element,
{
let dims = data.shape.clone();
let mut indices_data = dim_indices::<B, D>(&dims, dim);
if D == 1 {
// 1D sort
let slice = data.as_slice::<<K as BasicOps<B>>::Elem>().unwrap();
indices_data.sort_unstable_by(|&a, &b| {
compare(
&slice[a.elem::<i64>() as usize],
&slice[b.elem::<i64>() as usize],
descending,
)
});
} else {
sort_slice::<B, D, K>(
data.as_mut_slice().unwrap(),
&dims,
dim,
Some(&mut indices_data),
false,
descending,
);
}
B::int_from_data(TensorData::new(indices_data, data.shape), device)
}
/// Sort the elements by value along a given dimension.
///
/// When `indices` are not provided, the `data` is sorted.
/// Otherwise, the `indices` are sorted based on the value of the elements in `data`,
/// and if `permute_both` is enabled then the data is also sorted.
///
/// This sort is unstable (i.e., may reorder equal elements).
fn sort_slice<B: Backend, const D: usize, K: BasicOps<B>>(
data: &mut [<K as BasicOps<B>>::Elem],
dims: &[usize],
dim: usize,
mut indices: Option<&mut [IntElem<B>]>,
permute_both: bool,
descending: bool,
) where
<K as BasicOps<B>>::Elem: Element,
{
let strides = compute_strides::<D>(dims);
// Dimensions to access elements to sort
let mut sort_dims = dims.to_vec();
sort_dims[dim] = 1;
let strides_out = compute_strides::<D>(&sort_dims);
// Number of groups to sort
let num_sorts: usize = dims
.iter()
.enumerate()
.filter(|&(i, _)| i != dim)
.map(|(_, d)| d)
.product();
// TODO: run each sort in parallel
// run_par!(|| {
// iter_range_par!(0, num_sorts).for_each(|id| {...})
for id in 0..num_sorts {
let mut index_offset = 0;
let mut stride_dim = 0;
let mut shape_dim = 0;
for d in 0..D {
let stride_input = strides[d];
let stride_output = strides_out[d];
let shape_output = sort_dims[d];
let num_block = id / stride_output % shape_output;
if d != dim {
index_offset += num_block * stride_input;
} else {
let shape_input = dims[d];
stride_dim = stride_input;
shape_dim = shape_input;
index_offset += num_block;
}
}
// For each group, sort the indices based on the element values
// NOTE: Sorting methods like `sort_unstable_by` are in-place but we need to sort
// different views/groups of the underlying data, so the swap is performed on the elements
// of the (flat index, element value) collection.
let mut elements = (0..shape_dim)
.map(|d| {
let flat_index = d * stride_dim + index_offset;
let elem = data[flat_index];
(d, flat_index, elem)
})
.collect::<Vec<_>>();
elements.sort_unstable_by(|&(_, _, a), &(_, _, b)| compare(&a, &b, descending));
// Permute data in-place by the sorted indices
for idx in 0..elements.len() {
if elements[idx].0 != idx {
let mut current_idx = idx;
loop {
let target_idx = elements[current_idx].0;
elements[current_idx].0 = current_idx;
if elements[target_idx].0 == target_idx {
// correct position
break;
}
if indices.is_none() || permute_both {
// Permute data by indices
data.swap(elements[current_idx].1, elements[target_idx].1);
}
if let Some(ref mut indices_data) = indices {
// Permute data element indices
indices_data.swap(elements[current_idx].1, elements[target_idx].1);
}
current_idx = target_idx;
}
}
}
}
}
/// Computes the steps for each dimension when traversing an array.
fn compute_strides<const D: usize>(dims: &[usize]) -> [usize; D] {
assert_eq!(dims.len(), D);
let mut strides = [0; D];
let mut current = 1;
dims.iter().enumerate().rev().for_each(|(index, val)| {
strides[index] = current;
current *= val;
});
strides
}
/// Generates the indices for each element along the specified dimension.
fn dim_indices<B: Backend, const D: usize>(dims: &[usize], dim: usize) -> Vec<IntElem<B>> {
assert_eq!(dims.len(), D);
if D == 1 {
(0..dims[dim])
.map(|i| (i as i64).elem::<IntElem<B>>())
.collect::<Vec<_>>()
} else {
// Dimension indices tensor
let numel_leading_dims: usize = dims[..dim].iter().product();
let numel_trailing_dims: usize = dims[dim + 1..].iter().product();
(0..dims[dim])
.map(|i| [(i as i64).elem::<IntElem<B>>()].repeat(numel_trailing_dims))
.collect::<Vec<_>>()
.concat()
.repeat(numel_leading_dims)
}
}
/// Compare two elements
fn compare<E: ElementComparison>(a: &E, b: &E, descending: bool) -> Ordering {
if descending {
b.cmp(a)
} else {
a.cmp(b)
}
}