1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
use super::{cat::cat_with_slice_assign, BoolTensor, Device, FloatTensor, IntTensor};
use crate::{
backend::Backend, chunk, narrow, tensor::Shape, Bool, Data, ElementConversion, Tensor,
};
use alloc::vec::Vec;
use burn_common::reader::Reader;
use core::ops::Range;
#[cfg(any(feature = "wasm-sync", not(target_family = "wasm")))]
use crate::argwhere;
/// Bool Tensor API for basic operations, see [tensor](crate::Tensor)
/// for documentation on each function.
pub trait BoolTensorOps<B: Backend> {
/// Creates a new bool tensor.
///
/// # Arguments
///
/// * `shape` - The shape of the tensor.
/// * `device` - The device to create the tensor on.
///
/// # Returns
///
/// The boolean tensor with the given shape.
fn bool_empty<const D: usize>(shape: Shape<D>, device: &Device<B>) -> BoolTensor<B, D>;
/// Returns the shape of the tensor.
///
/// # Arguments
///
/// * `tensor` - The tensor.
///
/// # Returns
///
/// The shape of the tensor.
fn bool_shape<const D: usize>(tensor: &BoolTensor<B, D>) -> Shape<D>;
/// Converts the tensor to a data structure.
///
/// # Arguments
///
/// * `tensor` - The tensor.
///
/// # Returns
///
/// The data structure with the tensor's data.
fn bool_into_data<const D: usize>(tensor: BoolTensor<B, D>) -> Reader<Data<bool, D>>;
/// Gets the data from the tensor.
///
///
/// # Arguments
///
/// * `data` - The data structure.
///
/// # Returns
///
/// The data cloned from the data structure.
fn bool_to_data<const D: usize>(tensor: &BoolTensor<B, D>) -> Reader<Data<bool, D>> {
Self::bool_into_data(tensor.clone())
}
/// Creates a tensor from the data structure.
///
/// # Arguments
///
/// * `data` - The data structure.
/// * `device` - The device to create the tensor on.
///
/// # Returns
///
/// The tensor with the data.
fn bool_from_data<const D: usize>(data: Data<bool, D>, device: &Device<B>) -> BoolTensor<B, D>;
/// Converts bool tensor to int tensor.
///
/// # Arguments
///
/// * `tensor` - The tensor.
///
/// # Returns
///
/// The int tensor with the same data as the bool tensor.
fn bool_into_int<const D: usize>(tensor: BoolTensor<B, D>) -> IntTensor<B, D>;
/// Converts bool tensor to float tensor.
///
/// # Arguments
///
/// * `tensor` - The tensor.
///
/// # Returns
///
/// The float tensor with the same data as the bool tensor.
fn bool_into_float<const D: usize>(tensor: BoolTensor<B, D>) -> FloatTensor<B, D>;
/// Gets the device of the tensor.
///
/// # Arguments
///
/// * `tensor` - The tensor.
///
/// # Returns
///
/// The device of the tensor.
fn bool_device<const D: usize>(tensor: &BoolTensor<B, D>) -> Device<B>;
/// Moves the tensor to the device.
fn bool_to_device<const D: usize>(
tensor: BoolTensor<B, D>,
device: &Device<B>,
) -> BoolTensor<B, D>;
/// Reshapes the tensor.
///
/// # Arguments
///
/// * `tensor` - The tensor.
/// * `shape` - The new shape.
///
/// # Returns
///
/// The tensor with the new shape.
fn bool_reshape<const D1: usize, const D2: usize>(
tensor: BoolTensor<B, D1>,
shape: Shape<D2>,
) -> BoolTensor<B, D2>;
/// Gets the values from the tensor for the given ranges.
///
/// # Arguments
///
/// * `tensor` - The tensor.
/// * `ranges` - The ranges to get the values from.
///
/// # Returns
///
/// The tensor with the values for the given ranges.
fn bool_slice<const D1: usize, const D2: usize>(
tensor: BoolTensor<B, D1>,
ranges: [Range<usize>; D2],
) -> BoolTensor<B, D1>;
/// Sets the values in the tensor for the given ranges.
///
/// # Arguments
///
/// * `tensor` - The tensor.
/// * `ranges` - The ranges to set the values for.
/// * `value` - The values to set.
///
/// # Returns
///
/// The tensor with the values set for the given ranges.
fn bool_slice_assign<const D1: usize, const D2: usize>(
tensor: BoolTensor<B, D1>,
ranges: [Range<usize>; D2],
value: BoolTensor<B, D1>,
) -> BoolTensor<B, D1>;
/// Repeats one dimension of the tensor a given number of times along that dimension.
///
/// # Arguments
///
/// * `tensor` - The tensor.
/// * `dim` - The dimension to repeat.
/// * `times` - The number of times to repeat the dimension.
///
/// # Returns
///
/// The tensor with the dimension repeated.
fn bool_repeat<const D: usize>(
tensor: BoolTensor<B, D>,
dim: usize,
times: usize,
) -> BoolTensor<B, D> {
let mut shape = Self::bool_shape(&tensor);
if shape.dims[dim] != 1 {
panic!("Can only repeat dimension with dim=1");
}
shape.dims[dim] = times;
let mut i = 0;
let ranges_select_all = [0; D].map(|_| {
let start = 0;
let end = shape.dims[i];
i += 1;
start..end
});
let mut tensor_output = Self::bool_empty(shape, &Self::bool_device(&tensor));
for i in 0..times {
let mut ranges = ranges_select_all.clone();
ranges[dim] = i..i + 1;
tensor_output = Self::bool_slice_assign(tensor_output, ranges, tensor.clone());
}
tensor_output
}
/// Concatenates the tensors along the given dimension.
///
/// # Arguments
///
/// * `tensors` - The tensors to concatenate.
/// * `dim` - The dimension to concatenate along.
///
/// # Returns
///
/// The tensor with the tensors concatenated along the given dimension.
fn bool_cat<const D: usize>(tensors: Vec<BoolTensor<B, D>>, dim: usize) -> BoolTensor<B, D> {
cat_with_slice_assign::<B, D, Bool>(
tensors
.into_iter()
.map(Tensor::<B, D, Bool>::from_primitive)
.collect(),
dim,
)
.into_primitive()
}
/// Equates the two tensors.
///
/// # Arguments
///
/// * `lhs` - The left hand side tensor.
/// * `rhs` - The right hand side tensor.
///
/// # Returns
///
/// The tensor with the result of the equate.
fn bool_equal<const D: usize>(lhs: BoolTensor<B, D>, rhs: BoolTensor<B, D>)
-> BoolTensor<B, D>;
/// Element-wise non-equality comparison.
///
/// # Arguments
///
/// * `lhs` - The left hand side tensor.
/// * `rhs` - The right hand side tensor.
///
/// # Returns
///
/// The tensor with the result of the comparison.
fn bool_not_equal<const D: usize>(
lhs: BoolTensor<B, D>,
rhs: BoolTensor<B, D>,
) -> BoolTensor<B, D> {
let equal_tensor = B::bool_equal(lhs, rhs);
B::bool_not(equal_tensor)
}
/// Inverses boolean values.
///
/// # Arguments
///
/// * `tensor` - The tensor.
///
/// # Returns
///
/// The tensor with the result of the negation.
fn bool_not<const D: usize>(tensor: BoolTensor<B, D>) -> BoolTensor<B, D>;
/// Transposes a bool tensor.
///
/// # Arguments
///
/// * `tensor` - The tensor to transpose.
///
/// # Returns
///
/// The transposed tensor.
fn bool_transpose<const D: usize>(tensor: BoolTensor<B, D>) -> BoolTensor<B, D> {
Self::bool_swap_dims(tensor, D - 2, D - 1)
}
/// Swaps two dimensions of a bool tensor.
///
/// # Arguments
///
/// * `tensor` - The tensor to swap the dimensions of.
/// * `dim1` - The first dimension to swap.
/// * `dim2` - The second dimension to swap.
///
/// # Returns
///
/// The tensor with the dimensions swapped.
fn bool_swap_dims<const D: usize>(
tensor: BoolTensor<B, D>,
dim1: usize,
dim2: usize,
) -> BoolTensor<B, D>;
/// Permutes the dimensions of a tensor.
///
/// # Arguments
///
/// * `tensor` - The tensor to permute the dimensions of.
/// * `axes` - The new order of the dimensions.
/// # Returns
///
/// The tensor with the dimensions permuted.
fn bool_permute<const D: usize>(tensor: BoolTensor<B, D>, axes: [usize; D])
-> BoolTensor<B, D>;
/// Reverse the order of elements in a tensor along the given axes.
///
/// # Arguments
///
/// * `tensor` - The tensor to reverse.
/// * `axes` - The axes to reverse.
///
/// The tensor with the elements reversed.
fn bool_flip<const D: usize>(tensor: BoolTensor<B, D>, axes: &[usize]) -> BoolTensor<B, D>;
/// Returns a new tensor with the given dimension narrowed to the given range.
///
/// # Arguments
///
/// * `dim` - The dimension along which the tensor will be narrowed.
/// * `start` - The starting point of the given range.
/// * `length` - The ending point of the given range.
/// # Panics
///
/// - If the dimension is greater than the number of dimensions of the tensor.
/// - If the given range exceeds the number of elements on the given dimension.
///
/// # Returns
///
/// A new tensor with the given dimension narrowed to the given range.
fn bool_narrow<const D: usize>(
tensor: BoolTensor<B, D>,
dim: usize,
start: usize,
length: usize,
) -> BoolTensor<B, D> {
narrow::<B, D, Bool>(tensor, dim, start, length)
}
/// Split the tensor along the given dimension into chunks.
///
/// # Arguments
///
/// * `tensor` - The tensor.
/// * `chunks` - The number of chunks to be produced
/// * `times` - The dimension along which the tensor will be split.
///
/// # Returns
///
/// A vector of tensors
fn bool_chunk<const D: usize>(
tensor: BoolTensor<B, D>,
chunks: usize,
dim: usize,
) -> Vec<BoolTensor<B, D>> {
chunk::<B, D, Bool>(tensor, chunks, dim)
}
/// Tests if any element in the boolean `tensor` evaluates to True.
///
/// # Arguments
///
/// * `tensor` - The tensor to test.
///
/// # Returns
///
/// A boolean tensor with a single element, True if any element in the tensor is True, False otherwise.
fn bool_any<const D: usize>(tensor: BoolTensor<B, D>) -> BoolTensor<B, 1> {
let sum = B::int_sum(B::bool_into_int(tensor));
B::int_greater_elem(sum, 0.elem())
}
/// Tests if any element in the boolean `tensor` evaluates to True along a given dimension `dim`.
///
/// # Arguments
///
/// * `tensor` - The tensor to test.
/// * `dim` - The axis along which to test.
///
/// # Returns
///
/// A boolean tensor `Tensor<B, D, Bool>` with the same size as input `tensor`, except in the `dim` axis
/// where the size is 1. The elem in the `dim` axis is True if any element along this dim in the input
/// evaluates to True, False otherwise.
fn bool_any_dim<const D: usize>(tensor: BoolTensor<B, D>, dim: usize) -> BoolTensor<B, D> {
let sum = B::int_sum_dim(B::bool_into_int(tensor), dim);
B::int_greater_elem(sum, 0.elem())
}
/// Tests if all elements in the boolean `tensor` evaluate to True.
///
/// # Arguments
///
/// * `tensor` - The tensor to test.
///
/// # Returns
///
/// A boolean tensor `Tensor<B, 1, Bool>` with a single element, True if all elements in the input tensor
/// evaluate to True, False otherwise.
fn bool_all<const D: usize>(tensor: BoolTensor<B, D>) -> BoolTensor<B, 1> {
let num_elems = B::bool_shape(&tensor).num_elements();
let sum = B::int_sum(B::bool_into_int(tensor));
B::int_equal_elem(sum, (num_elems as i32).elem())
}
/// Tests if all elements in the boolean `tensor` evaluate to True along a given dimension `dim`.
///
/// # Arguments
///
/// * `tensor` - The tensor to test.
/// * `dim` - The axis along which to test.
///
/// # Returns
///
/// A boolean tensor `Tensor<B, D, Bool>` with the same size as input `tensor`, except in the `dim` axis
/// where the size is 1. The elem in the `dim` axis is True if all elements along this dim in the input
/// evaluates to True, False otherwise.
fn bool_all_dim<const D: usize>(tensor: BoolTensor<B, D>, dim: usize) -> BoolTensor<B, D> {
let num_elems = B::bool_shape(&tensor).dims[dim];
let sum = B::int_sum_dim(B::bool_into_int(tensor), dim);
B::int_equal_elem(sum, (num_elems as i32).elem())
}
/// Compute the indices of the elements that are non-zero, grouped by element.
///
/// # Arguments
///
/// * `tensor` - The input tensor.
///
/// # Returns
///
/// A vector of tensors, one for each dimension of the given tensor, containing the indices of
/// the non-zero elements in that dimension.
#[cfg(any(feature = "wasm-sync", not(target_family = "wasm")))]
fn bool_argwhere<const D: usize>(tensor: BoolTensor<B, D>) -> IntTensor<B, 2> {
argwhere::<B, D>(tensor)
}
/// Compute the indices of the elements that are non-zero.
///
/// # Arguments
///
/// * `tensor` - The input tensor.
///
/// # Returns
///
/// A vector of tensors, one for each dimension of the given tensor, containing the indices of
/// the non-zero elements in that dimension.
#[cfg(any(feature = "wasm-sync", not(target_family = "wasm")))]
fn bool_nonzero<const D: usize>(tensor: BoolTensor<B, D>) -> Vec<IntTensor<B, 1>> {
let indices = B::bool_argwhere(tensor);
let dims = B::int_shape(&indices).dims;
B::int_chunk(indices, dims[1], 1)
.into_iter()
.map(|t| B::int_reshape(t, Shape::new([dims[0]])))
.collect()
}
/// Broadcasts the bool `tensor` to the given `shape`.
fn bool_expand<const D1: usize, const D2: usize>(
tensor: BoolTensor<B, D1>,
shape: Shape<D2>,
) -> BoolTensor<B, D2>;
}