1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
use crate::{backend::Backend, Bool, Data, Int, Shape, Tensor};
use alloc::vec::Vec;

#[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
use crate::argwhere;

/// The part of the tensor to keep when creating a triangular mask.
enum TriPart {
    /// Upper triangular part.
    Upper,

    /// Lower triangular part.
    Lower,

    /// Diagonal part.
    Diagonal,
}

impl<B, const D: usize> Tensor<B, D, Bool>
where
    B: Backend,
{
    /// Create a boolean tensor from data on the given device.
    pub fn from_bool(data: Data<bool, D>, device: &B::Device) -> Self {
        Self::new(B::bool_from_data(data, device))
    }

    /// Convert the bool tensor into an int tensor.
    pub fn int(self) -> Tensor<B, D, Int> {
        Tensor::new(B::bool_into_int(self.primitive))
    }

    /// Convert the bool tensor into an float tensor.
    pub fn float(self) -> Tensor<B, D> {
        Tensor::new(B::bool_into_float(self.primitive))
    }

    /// Inverses boolean values.
    pub fn bool_not(self) -> Self {
        Tensor::new(B::bool_not(self.primitive))
    }

    /// Compute the indices of the elements that are non-zero.
    ///
    /// # Returns
    ///
    /// A vector of tensors, one for each dimension of the given tensor, containing the indices of
    /// the non-zero elements in that dimension.
    #[cfg(any(feature = "wasm-sync", not(target_family = "wasm")))]
    pub fn nonzero(self) -> Vec<Tensor<B, 1, Int>> {
        B::bool_nonzero(self.primitive)
            .into_iter()
            .map(Tensor::new)
            .collect()
    }

    /// Compute the indices of the elements that are true.
    ///
    /// # Returns
    ///
    /// A vector of tensors, one for each dimension of the given tensor, containing the indices of
    /// the non-zero elements in that dimension.
    #[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
    pub async fn nonzero(self) -> Vec<Tensor<B, 1, Int>> {
        let indices = self.argwhere().await.primitive;
        let dims = B::int_shape(&indices).dims;
        B::int_chunk(indices, dims[1], 1)
            .into_iter()
            .map(|t| B::int_reshape(t, Shape::new([dims[0]])))
            .map(Tensor::new)
            .collect()
    }

    /// Compute the indices of the elements that are true, grouped by element.
    ///
    /// # Returns
    ///
    /// A tensor containing the indices of all non-zero elements of the given tensor. Each row in the
    /// result contains the indices of a non-zero element.
    #[cfg(any(feature = "wasm-sync", not(target_family = "wasm")))]
    pub fn argwhere(self) -> Tensor<B, 2, Int> {
        Tensor::new(B::bool_argwhere(self.primitive))
    }

    /// Compute the indices of the elements that are true, grouped by element.
    ///
    /// # Returns
    ///
    /// A tensor containing the indices of all non-zero elements of the given tensor. Each row in the
    /// result contains the indices of a non-zero element.
    #[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
    pub async fn argwhere(self) -> Tensor<B, 2, Int> {
        Tensor::new(argwhere::<B, D>(self.primitive).await)
    }

    /// Creates a mask for the upper, lower triangle, or diagonal of a matrix, which can be used to
    /// fill the specified area with a value.
    fn tri_mask<S: Into<Shape<D>>>(
        shape: S,
        tri_part: TriPart,
        offset: i64,
        device: &B::Device,
    ) -> Self {
        let shape = shape.into();
        let height = shape.dims[D - 2];
        let width = shape.dims[D - 1];

        // Generate row and column index tensors.
        let row_indices: Tensor<B, 1, Int> = Tensor::arange(0..height as i64, device);
        let col_indices: Tensor<B, 1, Int> = Tensor::arange(0..width as i64, device);

        // Prepare shapes for broadcasting.
        let mut row_shape = [1; D];
        row_shape[D - 2] = height;
        let mut col_shape = [1; D];
        col_shape[D - 1] = width;

        // Reshape for broadcasting.
        let row_broadcast = row_indices.reshape(Shape::new(row_shape));
        let col_broadcast = col_indices.reshape(Shape::new(col_shape));

        // Broadcasting trick to create a matrix that facilitates comparison for mask generation.
        let matrix = row_broadcast.clone() - (col_broadcast.clone() - offset);

        // Select the appropriate comparison function based on `tri_part`.
        let compare = match tri_part {
            TriPart::Upper => Tensor::greater_elem,
            TriPart::Lower => Tensor::lower_elem,
            TriPart::Diagonal => Tensor::not_equal_elem,
        };

        // Generate and return the mask by applying the comparison to the matrix.
        compare(matrix, 0).unsqueeze()
    }

    /// Creates a mask for the upper triangle of a matrix, which can be used to fill the specified
    /// area with a value.
    ///
    /// This function generates a boolean tensor representing the mask of the upper triangle of a matrix.
    ///
    /// # Arguments
    ///
    /// * `shape`: The shape of the matrix.
    /// * `offset`: The offset from the diagonal, where 0 means the diagonal, and positive values shift
    ///  towards the upper triangle.
    /// * `device`: The device on which the tensor will be allocated.
    ///
    /// # Returns
    ///
    /// Returns a boolean tensor where `true` indicates the elements of the matrix that are part of the
    /// upper triangle taking into account the specified `offset`.
    pub fn triu_mask<S: Into<Shape<D>>>(shape: S, offset: i64, device: &B::Device) -> Self {
        Self::tri_mask(shape, TriPart::Upper, offset, device)
    }

    /// Creates a mask for the lower triangle of a matrix, which can be used to fill the specified
    /// area with a value.
    ///
    /// This function generates a boolean tensor representing the mask of the lower triangle of a matrix.
    ///
    /// # Arguments
    ///
    /// * `shape`: The shape of the matrix.
    /// * `offset`: The offset from the diagonal, where 0 means the diagonal, and negative values shift
    /// towards the lower triangle.
    /// * `device`: The device on which the tensor will be allocated.
    ///
    /// # Returns
    ///
    /// Returns a boolean tensor where `true` indicates the elements of the matrix that are part of the
    /// lower triangle taking into account the specified `offset`.
    pub fn tril_mask<S: Into<Shape<D>>>(shape: S, offset: i64, device: &B::Device) -> Self {
        Self::tri_mask(shape, TriPart::Lower, offset, device)
    }

    /// Creates a mask for the diagonal of a matrix, which can be used to fill the specified
    /// area with a value.
    ///
    /// This function generates a boolean tensor representing the mask of the diagonal of a matrix.
    ///
    /// # Arguments
    ///
    /// * `shape`: The shape of the matrix.
    /// * `device`: The device on which the tensor will be allocated.
    ///
    /// # Returns
    ///
    /// Returns a boolean tensor where `true` indicates the elements of the matrix that are part of the
    /// diagonal.
    pub fn diag_mask<S: Into<Shape<D>>>(shape: S, offset: i64, device: &B::Device) -> Self {
        Self::tri_mask(shape, TriPart::Diagonal, offset, device)
    }
}