1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
use crate::{backend::Backend, BasicOps, Shape, Tensor};
use alloc::format;
use alloc::string::{String, ToString};
use alloc::vec;
use alloc::vec::Vec;
use core::ops::Range;

/// The struct should always be used with the [check](crate::check) macro.
///
/// This is a simple pub(crate) data structure that efficiently checks tensor operations and
/// formats clear error messages. It's crucial that the checks are really fast, but it doesn't matter
/// when a failed check is discovered since the program will panic.
///
/// # Notes
///
/// Failing tensor checks will always result in a panic.
/// As mentioned in [The Rust Programming Language book](https://doc.rust-lang.org/book/ch09-03-to-panic-or-not-to-panic.html),
/// when there is no way to recover, panic should be used instead of a result.
///
/// Most users will unwrap the results anyway, which will worsen the clarity of the code. Almost
/// all checks highlight programming errors, which means invalid programs that should be fixed.
/// Checks are not the ideal way to help users write correct programs, but they are still better
/// than backend errors. Other forms of compile-time validation could be developed, such as named
/// tensors, but we have to carefully evaluate the ease of use of the Tensor API. Adding overly
/// complex type validation checks might drastically worsen the API and result in harder-to-maintain
/// programs.
///
/// # Design
///
/// Maybe the Backend API should return a result for each operation, which would allow handling
/// all checks, even the ones that can't be efficiently checked before performing an operation,
/// such as the `index_select` operation. The downside of that approach is that all backend
/// implementation might re-implement the same checks, which may result in uncessary code
/// duplication. Maybe a combination of both strategies could help to cover all usecases.
pub(crate) enum TensorCheck {
    Ok,
    Failed(FailedTensorCheck),
}

impl TensorCheck {
    /// Checks device and shape compatibility for element wise binary operations.
    pub(crate) fn binary_ops_ew<B: Backend, const D: usize, K: BasicOps<B>>(
        ops: &str,
        lhs: &Tensor<B, D, K>,
        rhs: &Tensor<B, D, K>,
    ) -> Self {
        Self::Ok
            .binary_ops_device(ops, &lhs.device(), &rhs.device())
            .binary_ops_ew_shape(ops, &lhs.shape(), &rhs.shape())
    }

    pub(crate) fn into_scalar<const D: usize>(shape: &Shape<D>) -> Self {
        let mut check = Self::Ok;

        if shape.num_elements() != 1 {
            check = check.register(
                "Into Scalar",
                TensorError::new("Only tensors with 1 element can be converted into scalar.")
                    .details(format!(
                        "Current tensor has {} elements",
                        shape.num_elements()
                    )),
            );
        }

        check
    }

    pub(crate) fn dim_ops<const D: usize>(ops: &str, dim: usize) -> Self {
        let mut check = Self::Ok;

        if dim >= D {
            check = check.register(
                ops,
                TensorError::new("Given dimension is higher than the tensor rank.")
                    .details(format!("Tensor rank: '{D}', given dimension: '{dim}'.")),
            );
        }

        check
    }

    pub(crate) fn narrow<B: Backend, const D: usize, K: BasicOps<B>>(
        tensor: &Tensor<B, D, K>,
        dim: usize,
        start: usize,
        length: usize,
    ) -> Self {
        let mut check = Self::Ok;

        if length == 0 {
            check = check.register(
                "Narrow",
                TensorError::new(format!(
                    "Can't narrow at dimension {}, length must be greater than 0",
                    dim
                )),
            );
        }

        if start >= tensor.shape().dims[dim] {
            check = check.register(
                "Narrow",
                TensorError::new(format!(
                    "Can't narrow at dimension {}, start exceeds the size of the tensor along this dimension (Size={})",
                    dim, tensor.shape().dims[dim]
                )),
            );
        }

        if start + length > tensor.shape().dims[dim] {
            check = check.register(
                "Narrow",
                TensorError::new(format!(
                    "Can't narrow at dimension {}, start + length exceeds the size of the tensor along this dimension (Size={})",
                    dim, tensor.shape().dims[dim]
                )),
            );
        }

        check
    }

    pub(crate) fn reshape_args_usize<const D1: usize, const D2: usize>(
        original: &Shape<D1>,
        target: &Shape<D2>,
    ) -> Self {
        let mut check = Self::Ok;

        if original.num_elements() != target.num_elements() {
            check = check.register(
        "Reshape",
        TensorError::new(
          "The given shape doesn't have the same number of elements as the current tensor.",
        )
        .details(format!(
          "Current shape: {:?}, target shape: {:?}.",
          original.dims, target.dims
        )),
      );
        }

        check
    }

    pub(crate) fn reshape_args_i32<const D: usize>(target: &[i32; D]) -> Self {
        let mut check = Self::Ok;

        if target.iter().any(|&dim| dim < -1) {
            check = check.register(
                "Reshape",
                TensorError::new(
                    "The given shape cannot contain negative dimensions (other than -1).",
                )
                .details(format!("Target shape: {:?}.", target)),
            );
        }

        if target.iter().filter(|&x| x == &-1).count() > 1 {
            check = check.register(
                "Reshape",
                TensorError::new("The given shape cannot contain more than one -1.")
                    .details(format!("Target shape: {:?}.", target)),
            );
        }

        check
    }

    pub(crate) fn flatten<const D1: usize, const D2: usize>(
        start_dim: usize,
        end_dim: usize,
    ) -> Self {
        let mut check = Self::Ok;

        if start_dim > end_dim {
            check = check.register(
                "Flatten",
                TensorError::new(format!(
                    "The start dim ({start_dim}) must be smaller than the end dim ({end_dim})"
                )),
            );
        }

        if D2 > D1 {
            check = check.register(
                "Flatten",
                TensorError::new(format!("Result dim ({D2}) must be smaller than ({D1})")),
            );
        }

        if D1 < end_dim + 1 {
            check = check.register(
                "Flatten",
                TensorError::new(format!(
                    "The end dim ({end_dim}) must be greater than the tensor dim ({D2})"
                )),
            );
        }

        if D2 < D1 - (end_dim - start_dim) {
            check = check.register(
                "Flatten",
                TensorError::new(format!(
                    "The destination dimension ({D2}) must be large enough to accommodate the flattening operation."

                )),
            );
        }

        check
    }

    pub(crate) fn tri<const D: usize>() -> Self {
        let mut check = Self::Ok;

        if D < 2 {
            check = check.register(
                "Tri",
                TensorError::new(format!(
                    "The input tensor must have at least 2 dimensions, got {D}"
                )),
            );
        }

        check
    }

    pub(crate) fn squeeze<const D2: usize>(dim: usize, tensor_dims: &[usize]) -> Self {
        let mut check = Self::Ok;
        // This should actually be to check that the dimension to squeeze
        // has a size of 1
        if tensor_dims[dim] != 1 {
            check = check.register(
                "Squeeze",
                TensorError::new(format!(
                    "Can't squeeze dimension {} because its size is not 1",
                    dim
                )),
            );
        }

        check
    }

    pub(crate) fn unsqueeze<const D1: usize, const D2: usize>() -> Self {
        let mut check = Self::Ok;
        if D2 < D1 {
            check = check.register(
                "Unsqueeze",
                TensorError::new(format!(
                    "Can't unsqueeze smaller tensor, got dim {D2}, expected > {D1}"
                )),
            );
        }

        check
    }

    pub(crate) fn unsqueeze_dim<const D: usize>(dim: usize) -> Self {
        let mut check = Self::Ok;
        if dim > D {
            check = check.register(
                "Unsqueeze",
                TensorError::new(format!(
                    "Can't unsqueeze at dimension {}, exceeds tensor dimensions (D={})",
                    dim, D
                )),
            );
        }

        check
    }

    pub(crate) fn swap_dims<const D: usize>(dim1: usize, dim2: usize) -> Self {
        let mut check = Self::Ok;

        if dim1 > D || dim2 > D {
            check = check.register(
                "Swap Dims",
                TensorError::new("The swap dimensions must be smaller than the tensor dimension")
                    .details(format!(
                        "Swap dims ({dim1}, {dim2}) on tensor with ({D}) dimensions."
                    )),
            );
        }

        check
    }

    pub(crate) fn matmul<B: Backend, const D: usize>(
        lhs: &Tensor<B, D>,
        rhs: &Tensor<B, D>,
    ) -> Self {
        let mut check = Self::Ok;

        check = check.binary_ops_device("Matmul", &lhs.device(), &rhs.device());

        if D < 2 {
            return check;
        }

        let shape_lhs = lhs.shape();
        let shape_rhs = rhs.shape();

        let dim_lhs = shape_lhs.dims[D - 1];
        let dim_rhs = shape_rhs.dims[D - 2];

        if dim_lhs != dim_rhs {
            check = check.register(
                "Matmul",
                TensorError::new(format!(
          "The inner dimension of matmul should be the same, but got {dim_lhs} and {dim_rhs}."
        ))
                .details(format!(
                    "Lhs shape {:?}, rhs shape {:?}.",
                    shape_lhs.dims, shape_rhs.dims
                )),
            );
        }

        check
    }

    pub(crate) fn stack<B: Backend, const D: usize, K: BasicOps<B>>(
        tensors: &[Tensor<B, D, K>],
        dim: usize,
    ) -> Self {
        let mut check = Self::Ok;

        if dim > D {
            check = check.register(
                "Stack",
                TensorError::new(
                    "Can't stack tensors on a dim that exceeds the tensors dimension (inclusive)",
                )
                .details(format!(
                    "Trying to concatenate tensors with {D} dimensions on axis {dim}."
                )),
            );
        }

        if tensors.is_empty() {
            return check.register(
                "Stack",
                TensorError::new("Can't stack an empty list of tensors."),
            );
        }

        let shape_reference = tensors.get(0).unwrap().shape();

        for tensor in tensors {
            let shape = tensor.shape();

            if shape_reference != shape {
                return check.register(
                    "Stack",
                    TensorError::new("Can't stack tensors with different shapes").details(format!(
                        "Provided dimension ({}), tensors shapes: {:?}",
                        dim,
                        tensors.iter().map(Tensor::shape).collect::<Vec<_>>()
                    )),
                );
            }
        }

        check
    }

    pub(crate) fn cat<B: Backend, const D: usize, K: BasicOps<B>>(
        tensors: &[Tensor<B, D, K>],
        dim: usize,
    ) -> Self {
        let mut check = Self::Ok;

        if dim >= D {
            check = check.register(
                "Cat",
                TensorError::new(
                    "Can't concatenate tensors on a dim that exceeds the tensors dimension",
                )
                .details(format!(
                    "Trying to concatenate tensors with {D} dimensions on axis {dim}."
                )),
            );
        }

        if tensors.is_empty() {
            return check.register(
                "Cat",
                TensorError::new("Can't concatenate an empty list of tensors."),
            );
        }

        let mut shape_reference = tensors.get(0).unwrap().shape();
        shape_reference.dims[dim] = 1; // We want to check every dims except the one where the
                                       // concatenation happens.

        for tensor in tensors {
            let mut shape = tensor.shape();
            shape.dims[dim] = 1; // Ignore the concatenate dim.

            if shape_reference != shape {
                return check.register(
          "Cat",
          TensorError::new(
            "Can't concatenate tensors with different shapes, except for the provided dimension",
          )
          .details(format!(
            "Provided dimension ({}), tensors shapes: {:?}",
            dim,
            tensors.iter().map(Tensor::shape).collect::<Vec<_>>()
          )),
        );
            }
        }

        check
    }

    pub(crate) fn slice<const D1: usize, const D2: usize>(
        shape: &Shape<D1>,
        ranges: &[Range<usize>; D2],
    ) -> Self {
        let mut check = Self::Ok;
        let n_dims_tensor = D1;
        let n_dims_ranges = D2;

        if n_dims_tensor < n_dims_ranges {
            check = check.register("Slice", 
                TensorError::new ("The provided ranges array has a higher number of dimensions than the current tensor.")
                .details(
                    format!(
                    "The ranges array must be smaller or equal to the tensor number of dimensions. \
                    Tensor number of dimensions: {n_dims_tensor}, ranges array length {n_dims_ranges}."
                )));
        }

        for i in 0..usize::min(D1, D2) {
            let d_tensor = shape.dims[i];
            let range = ranges.get(i).unwrap();

            if range.end > d_tensor {
                check = check.register(
          "Slice",
          TensorError::new(
            "The provided ranges array has a range that exceeds the current tensor size.",
          )
          .details(format!(
            "The range ({}..{}) exceeds the size of the tensor ({}) at dimension {}. \
                        Tensor shape {:?}, provided ranges {:?}.",
            range.start, range.end, d_tensor, i, shape.dims, ranges,
          )),
        );
            }

            if range.start >= range.end {
                check = check.register(
                    "Slice",
                    TensorError::new("The provided range array has a range where the start index is bigger or equal to its end.")
                    .details(format!(
                        "The range at dimension '{}' starts at '{}' and is greater or equal to its end '{}'. \
                        Tensor shape {:?}, provided ranges {:?}.",
                        i,
                        range.start,
                        range.end,
                        shape.dims,
                        ranges,
                    )));
            }
        }

        check
    }

    pub(crate) fn slice_assign<const D1: usize, const D2: usize>(
        shape: &Shape<D1>,
        shape_value: &Shape<D1>,
        ranges: &[Range<usize>; D2],
    ) -> Self {
        let mut check = Self::Ok;

        if D1 < D2 {
            check = check.register(
        "Slice Assign",
        TensorError::new(
          "The provided ranges array has a higher number of dimensions than the current tensor.",
        )
        .details(format!(
          "The ranges array must be smaller or equal to the tensor number of dimensions. \
                    Tensor number of dimensions: {D1}, ranges array length {D2}."
        )),
      );
        }

        for i in 0..usize::min(D1, D2) {
            let d_tensor = shape.dims[i];
            let d_tensor_value = shape_value.dims[i];
            let range = ranges.get(i).unwrap();

            if range.end > d_tensor {
                check = check.register(
          "Range Assign",
          TensorError::new(
            "The provided ranges array has a range that exceeds the current tensor size.",
          )
          .details(format!(
            "The range ({}..{}) exceeds the size of the tensor ({}) at dimension {}. \
                        Current tensor shape {:?}, value tensor shape {:?}, provided ranges {:?}.",
            range.start, range.end, d_tensor, i, shape.dims, shape_value.dims, ranges,
          )),
        );
            }

            if range.end - range.start != d_tensor_value {
                check = check.register(
                    "Slice Assign",
                    TensorError::new("The value tensor must match the amount of elements selected with the ranges array")
                    .details(format!(
                        "The range ({}..{}) doesn't match the number of elements of the value tensor ({}) at dimension {}. \
                        Current tensor shape {:?}, value tensor shape {:?}, provided ranges {:?}.",
                        range.start,
                        range.end,
                        d_tensor_value,
                        i,
                        shape.dims,
                        shape_value.dims,
                        ranges,
                    )));
            }

            if range.start >= range.end {
                check = check.register(
                    "Slice Assign",
                    TensorError::new("The provided ranges array has a range where the start index is bigger or equal to its end.")
                    .details(format!(
                        "The range at dimension '{}' starts at '{}' and is greater or equal to its end '{}'. \
                        Current tensor shape {:?}, value tensor shape {:?}, provided ranges {:?}.",
                        i,
                        range.start,
                        range.end,
                        shape.dims,
                        shape_value.dims,
                        ranges,
                    )));
            }
        }

        check
    }

    pub(crate) fn gather<const D: usize>(
        dim: usize,
        shape: &Shape<D>,
        shape_indices: &Shape<D>,
    ) -> Self {
        Self::check_gather_scatter_indices(Self::Ok, "Gather", dim, shape, shape_indices)
    }

    pub(crate) fn scatter<const D: usize>(
        dim: usize,
        shape: &Shape<D>,
        shape_indices: &Shape<D>,
        shape_value: &Shape<D>,
    ) -> Self {
        let ops = "Scatter";
        let mut check =
            Self::check_gather_scatter_indices(Self::Ok, ops, dim, shape, shape_indices);

        if shape_indices != shape_value {
            check = check.register(
                ops,
                TensorError::new(
                    "Indices tensor shape should be the same as the value tensor shape."
                        .to_string(),
                )
                .details(format!(
                    "The shape differs: {:?} != {:?}",
                    shape_indices.dims, shape_value.dims
                )),
            );
        }

        check
    }

    pub(crate) fn select<const D: usize>(dim: usize) -> Self {
        Self::check_select_basic::<D>(Self::Ok, "select", dim)
    }

    pub(crate) fn select_assign<const D: usize>(dim: usize) -> Self {
        Self::check_select_basic::<D>(Self::Ok, "select_assign", dim)
    }

    fn check_select_basic<const D: usize>(mut check: Self, ops: &str, dim: usize) -> Self {
        if dim > D {
            check = check.register(
                ops,
                TensorError::new(format!(
                    "Can't index a tensor with ({D}) dimensions on axis ({dim})"
                )),
            );
        }

        check
    }
    fn check_gather_scatter_indices<const D: usize>(
        mut check: Self,
        ops: &str,
        dim: usize,
        shape: &Shape<D>,
        shape_indices: &Shape<D>,
    ) -> Self {
        if dim > D {
            check = check.register(
                ops,
                TensorError::new(format!(
                    "Can't index a tensor with ({D}) dimensions on axis ({dim})"
                )),
            );
        }

        for i in 0..D {
            if i == dim {
                continue;
            }

            let tensor_dim_i = shape.dims[i];
            let indices_dim_i = shape_indices.dims[i];

            if tensor_dim_i != indices_dim_i {
                check = check.register(
                    ops,
                    TensorError::new(
                        "The tensor shape should be the same as the index tensor shape."
                            .to_string(),
                    )
                    .details(format!(
                        "The shape differs at dimension {i}: {tensor_dim_i} != {indices_dim_i}"
                    )),
                );
            }
        }

        check
    }

    /// Checks aggregate dimension such as mean and sum.
    pub(crate) fn aggregate_dim<const D: usize>(ops: &str, dim: usize) -> Self {
        let mut check = Self::Ok;

        if dim > D {
            check = check.register(
                ops,
                TensorError::new(format!(
                    "Can't aggregate a tensor with ({D}) dimensions on axis ({dim})"
                )),
            );
        }

        check
    }

    /// The goal is to minimize the cost of checks when there are no error, but it's way less
    /// important when an error occurred, crafting a comprehensive error message is more important
    /// than optimizing string manipulation.
    fn register(self, ops: &str, error: TensorError) -> Self {
        let errors = match self {
            Self::Ok => vec![error],
            Self::Failed(mut failed) => {
                failed.errors.push(error);
                failed.errors
            }
        };

        Self::Failed(FailedTensorCheck {
            ops: ops.to_string(),
            errors,
        })
    }

    /// Checks if shapes are compatible for element wise operations supporting broadcasting.
    pub(crate) fn binary_ops_ew_shape<const D: usize>(
        self,
        ops: &str,
        lhs: &Shape<D>,
        rhs: &Shape<D>,
    ) -> Self {
        let mut check = self;

        for i in 0..D {
            let d_lhs = lhs.dims[i];
            let d_rhs = rhs.dims[i];

            if d_lhs != d_rhs {
                let is_broadcast = d_lhs == 1 || d_rhs == 1;

                if is_broadcast {
                    continue;
                }

                check = check.register(
                    ops,
                    TensorError::new("The provided tensors have incompatible shapes.").details(
                        format!(
            "Incompatible size at dimension '{}' => '{} != {}', which can't be broadcasted. \
                    Lhs tensor shape {:?}, Rhs tensor shape {:?}.",
            i, d_lhs, d_rhs, lhs.dims, rhs.dims,
          ),
                    ),
                );
            }
        }

        check
    }

    /// Checks if tensor devices are equal.
    fn binary_ops_device<Device: PartialEq + core::fmt::Debug>(
        self,
        ops: &str,
        lhs: &Device,
        rhs: &Device,
    ) -> Self {
        match lhs != rhs {
            true => self.register(
                ops,
                TensorError::new("The provided tensors are not on the same device.").details(
                    format!("Lhs tensor device {lhs:?}, Rhs tensor device {rhs:?}.",),
                ),
            ),
            false => self,
        }
    }
}

pub(crate) struct FailedTensorCheck {
    ops: String,
    errors: Vec<TensorError>,
}

impl FailedTensorCheck {
    /// Format all the checks into a single message ready to be printed by a [panic](core::panic).
    pub(crate) fn format(self) -> String {
        self.errors.into_iter().enumerate().fold(
            format!(
                "=== Tensor Operation Error ===\n  Operation: '{}'\n  Reason:",
                self.ops
            ),
            |accum, (number, error)| accum + error.format(number + 1).as_str(),
        ) + "\n"
    }
}

struct TensorError {
    description: String,
    details: Option<String>,
}

impl TensorError {
    pub(crate) fn new<S: Into<String>>(description: S) -> Self {
        TensorError {
            description: description.into(),
            details: None,
        }
    }

    pub(crate) fn details<S: Into<String>>(mut self, details: S) -> Self {
        self.details = Some(details.into());
        self
    }

    fn format(self, number: usize) -> String {
        let mut message = format!("\n    {number}. ");
        message += self.description.as_str();
        message += " ";

        if let Some(details) = self.details {
            message += details.as_str();
            message += " ";
        }

        message
    }
}

/// We use a macro for all checks, since the panic message file and line number will match the
/// function that does the check instead of a the generic error.rs crate private unrelated file
/// and line number.
#[macro_export(local_inner_macros)]
macro_rules! check {
    ($check:expr) => {
        if let TensorCheck::Failed(check) = $check {
            core::panic!("{}", check.format());
        }
    };
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    #[should_panic]
    fn reshape_invalid_shape() {
        check!(TensorCheck::reshape_args_usize(
            &Shape::new([2, 2]),
            &Shape::new([1, 3])
        ));
    }

    #[test]
    fn reshape_valid_shape() {
        check!(TensorCheck::reshape_args_usize(
            &Shape::new([2, 2]),
            &Shape::new([1, 4])
        ));
    }

    #[test]
    #[should_panic]
    fn index_range_exceed_dimension() {
        check!(TensorCheck::slice(
            &Shape::new([3, 5, 7]),
            &[0..2, 0..4, 1..8]
        ));
    }

    #[test]
    #[should_panic]
    fn index_range_exceed_number_of_dimensions() {
        check!(TensorCheck::slice(&Shape::new([3, 5]), &[0..1, 0..1, 0..1]));
    }

    #[test]
    #[should_panic]
    fn binary_ops_shapes_no_broadcast() {
        check!(TensorCheck::binary_ops_ew_shape(
            TensorCheck::Ok,
            "TestOps",
            &Shape::new([3, 5]),
            &Shape::new([3, 6])
        ));
    }

    #[test]
    fn binary_ops_shapes_with_broadcast() {
        check!(TensorCheck::binary_ops_ew_shape(
            TensorCheck::Ok,
            "Test",
            &Shape::new([3, 5]),
            &Shape::new([1, 5])
        ));
    }

    #[test]
    #[should_panic]
    fn binary_ops_devices() {
        check!(TensorCheck::binary_ops_device(
            TensorCheck::Ok,
            "Test",
            &5, // We can pass anything that implements PartialEq as device
            &8
        ));
    }
}