1use burn_core as burn;
2
3use super::SimpleOptimizer;
4use super::adaptor::OptimizerAdaptor;
5use super::decay::{WeightDecay, WeightDecayConfig};
6use super::momentum::{Momentum, MomentumConfig, MomentumState};
7use crate::LearningRate;
8use crate::grad_clipping::GradientClippingConfig;
9use burn::config::Config;
10use burn::module::AutodiffModule;
11use burn::record::Record;
12use burn::tensor::Tensor;
13use burn::tensor::backend::{AutodiffBackend, Backend};
14
15#[derive(Config, Debug)]
17pub struct SgdConfig {
18 weight_decay: Option<WeightDecayConfig>,
20 momentum: Option<MomentumConfig>,
22 gradient_clipping: Option<GradientClippingConfig>,
24}
25
26#[derive(Clone)]
30pub struct Sgd<B: Backend> {
31 momentum: Option<Momentum<B>>,
32 weight_decay: Option<WeightDecay>,
33}
34
35#[derive(Record, Clone, new)]
37pub struct SgdState<B: Backend, const D: usize> {
38 pub momentum: Option<MomentumState<B, D>>,
40}
41
42impl SgdConfig {
43 pub fn init<B: AutodiffBackend, M: AutodiffModule<B>>(
45 &self,
46 ) -> OptimizerAdaptor<Sgd<B::InnerBackend>, M, B> {
47 let momentum = self.momentum.as_ref().map(Momentum::new);
48 let weight_decay = self.weight_decay.as_ref().map(WeightDecay::new);
49
50 let mut optim = OptimizerAdaptor::from(Sgd {
51 momentum,
52 weight_decay,
53 });
54 if let Some(config) = &self.gradient_clipping {
55 optim = optim.with_grad_clipping(config.init());
56 }
57 optim
58 }
59}
60
61impl<B: Backend> SimpleOptimizer<B> for Sgd<B> {
62 type State<const D: usize> = SgdState<B, D>;
63
64 fn step<const D: usize>(
65 &self,
66 lr: LearningRate,
67 tensor: Tensor<B, D>,
68 mut grad: Tensor<B, D>,
69 state: Option<Self::State<D>>,
70 ) -> (Tensor<B, D>, Option<Self::State<D>>) {
71 let mut state_momentum = None;
72
73 if let Some(state) = state {
74 state_momentum = state.momentum;
75 }
76
77 if let Some(weight_decay) = &self.weight_decay {
78 grad = weight_decay.transform(grad, tensor.clone());
79 }
80
81 if let Some(momentum) = &self.momentum {
82 let (grad_out, state) = momentum.transform(grad, state_momentum);
83 state_momentum = Some(state);
84 grad = grad_out;
85 }
86
87 let state = SgdState::new(state_momentum);
88 let delta = grad.mul_scalar(lr);
89
90 (tensor - delta, Some(state))
91 }
92
93 fn to_device<const D: usize>(mut state: Self::State<D>, device: &B::Device) -> Self::State<D> {
94 state.momentum = state.momentum.map(|state| state.to_device(device));
95 state
96 }
97}
98
99#[cfg(test)]
100mod tests {
101 use super::*;
102 use crate::{
103 TestAutodiffBackend, TestBackend,
104 grad_clipping::GradientClipping,
105 optim::{GradientsParams, Optimizer},
106 };
107 use burn::tensor::{Distribution, Shape};
108 use burn_nn::{Linear, LinearConfig};
109
110 const LEARNING_RATE: LearningRate = 0.02;
111
112 #[test]
113 fn with_updated_params_should_have_state() {
114 let device = Default::default();
115 let layer = layer::<TestAutodiffBackend>(&device);
116 let mut optim = sgd_with_all();
117 let loss = layer.forward(random_tensor::<TestAutodiffBackend>(&device));
118 let grads = loss.backward();
119 let grads = GradientsParams::from_grads(grads, &layer);
120 let _layer = optim.step(LEARNING_RATE, layer, grads);
121
122 let record = optim.to_record();
123
124 assert!(!record.is_empty());
125 }
126
127 #[test]
128 fn without_updated_params_should_not_have_state() {
129 let optim = sgd_with_all();
130 let record = optim.to_record();
131 assert!(record.is_empty());
132 }
133
134 #[test]
135 fn can_attach_gradient_clipping() {
136 let optim = sgd_with_all().with_grad_clipping(GradientClipping::Value(0.5));
137 assert!(optim.has_gradient_clipping());
138 }
139
140 #[test]
141 fn should_load_state() {
142 let device = Default::default();
143 let layer = layer::<TestAutodiffBackend>(&device);
144 let mut optim = sgd_with_all();
145 let loss = layer.forward(random_tensor(&device));
146 let grads = loss.backward();
147 let grads = GradientsParams::from_grads(grads, &layer);
148 let _layer = optim.step(LEARNING_RATE, layer, grads);
149
150 let record = optim.to_record();
151 let optim_new = sgd_with_all();
152 let record_new = optim_new.to_record();
153 let optim_new = optim_new.load_record(record.clone());
154 let state_restored = optim_new.to_record();
155
156 assert_ne!(record.len(), record_new.len());
157 assert_eq!(record.len(), state_restored.len());
158 }
159
160 fn random_tensor<B: Backend>(device: &B::Device) -> Tensor<B, 2> {
161 Tensor::<B, 2>::random(Shape::new([2, 20]), Distribution::Default, device)
162 }
163
164 fn layer<B: Backend>(device: &B::Device) -> Linear<B> {
165 LinearConfig::new(20, 20).init(device)
166 }
167
168 fn sgd_with_all()
169 -> OptimizerAdaptor<Sgd<TestBackend>, Linear<TestAutodiffBackend>, TestAutodiffBackend> {
170 SgdConfig {
171 weight_decay: Some(WeightDecayConfig { penalty: 0.05 }),
172 momentum: Some(MomentumConfig {
173 momentum: 0.9,
174 dampening: 0.1,
175 nesterov: true,
176 }),
177 gradient_clipping: None,
178 }
179 .init()
180 }
181}