1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
use alloc::vec::Vec;

use crate::{element::FloatNdArrayElement, tensor::NdArrayTensor, NdArrayBackend, NdArrayDevice};

use burn_tensor::{ops::*, Shape};

use super::{
    conv::conv2d,
    maxpool::{max_pool2d, max_pool2d_backward, max_pool2d_with_indexes},
};

impl<E: FloatNdArrayElement> ModuleOps<NdArrayBackend<E>> for NdArrayBackend<E> {
    fn embedding(
        weights: NdArrayTensor<E, 2>,
        indexes: NdArrayTensor<i64, 2>,
    ) -> NdArrayTensor<E, 3> {
        let [batch_size, seq_length] = indexes.shape().dims;
        let [_n_embedding, d_model] = weights.shape().dims;

        let mut tensors = Vec::with_capacity(batch_size * seq_length);

        for index in
            NdArrayBackend::<E>::int_reshape(indexes, Shape::new([batch_size * seq_length]))
                .array
                .iter()
        {
            let index = *index as usize;
            tensors.push(NdArrayBackend::index(
                weights.clone(),
                [index..index + 1, 0..d_model],
            ));
        }
        let embedding = NdArrayBackend::cat(tensors, 0);
        NdArrayBackend::reshape(embedding, Shape::new([batch_size, seq_length, d_model]))
    }

    fn embedding_backward(
        weights: NdArrayTensor<E, 2>,
        output: NdArrayTensor<E, 3>,
        indexes: NdArrayTensor<i64, 2>,
    ) -> NdArrayTensor<E, 2> {
        let [batch_size, seq_length] = indexes.shape().dims;
        let [_n_embedding, d_model] = weights.shape().dims;

        let mut weights_grad = NdArrayBackend::zeros(weights.shape(), &NdArrayDevice::Cpu);
        let output =
            NdArrayBackend::reshape(output, Shape::new([batch_size * seq_length, d_model]));

        for (index_output, index) in
            NdArrayBackend::<E>::int_reshape(indexes, Shape::new([batch_size * seq_length]))
                .array
                .iter()
                .enumerate()
        {
            let index = *index as usize;

            let weights_grad_current =
                NdArrayBackend::index(weights_grad.clone(), [index..index + 1, 0..d_model]);
            let output_grad =
                NdArrayBackend::index(output.clone(), [index_output..index_output + 1, 0..d_model]);

            weights_grad = NdArrayBackend::index_assign(
                weights_grad,
                [index..index + 1, 0..d_model],
                NdArrayBackend::add(output_grad, weights_grad_current),
            );
        }

        weights_grad
    }

    fn conv2d(
        x: NdArrayTensor<E, 4>,
        weight: NdArrayTensor<E, 4>,
        bias: Option<NdArrayTensor<E, 1>>,
        stride: [usize; 2],
        padding: [usize; 2],
    ) -> NdArrayTensor<E, 4> {
        conv2d(x, weight, bias, stride, padding, [1, 1])
    }

    fn max_pool2d(
        x: NdArrayTensor<E, 4>,
        kernel_size: [usize; 2],
        stride: [usize; 2],
        padding: [usize; 2],
    ) -> NdArrayTensor<E, 4> {
        max_pool2d(x, kernel_size, stride, padding)
    }

    fn max_pool2d_with_indexes(
        x: NdArrayTensor<E, 4>,
        kernel_size: [usize; 2],
        stride: [usize; 2],
        padding: [usize; 2],
    ) -> MaxPool2dWithIndexes<NdArrayBackend<E>> {
        let (output, indexes) = max_pool2d_with_indexes(x, kernel_size, stride, padding);

        MaxPool2dWithIndexes::new(output, indexes)
    }

    fn max_pool2d_with_indexes_backward(
        x: NdArrayTensor<E, 4>,
        kernel_size: [usize; 2],
        stride: [usize; 2],
        padding: [usize; 2],
        output_grad: NdArrayTensor<E, 4>,
        indexes: NdArrayTensor<i64, 4>,
    ) -> MaxPool2dBackward<NdArrayBackend<E>> {
        MaxPool2dBackward::new(max_pool2d_backward(
            x,
            kernel_size,
            stride,
            padding,
            output_grad,
            indexes,
        ))
    }
}