1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
use super::{element::NdArrayElement, NdArrayBackend, NdArrayTensor};
use burn_tensor::{ops::*, Shape};
use std::ops::Add;

impl<E: NdArrayElement> ModuleOps<NdArrayBackend<E>> for NdArrayBackend<E> {
    fn embedding(
        weights: &NdArrayTensor<E, 2>,
        indexes: &NdArrayTensor<i64, 2>,
    ) -> NdArrayTensor<E, 3> {
        let [batch_size, seq_length] = indexes.shape.dims;
        let [_n_embedding, d_model] = weights.shape.dims;

        let mut tensors = Vec::with_capacity(batch_size * seq_length);

        for index in NdArrayBackend::reshape(indexes, Shape::new([batch_size * seq_length]))
            .array
            .iter()
        {
            let index = *index as usize;
            tensors.push(NdArrayBackend::index(
                weights,
                [index..index + 1, 0..d_model],
            ));
        }
        let embedding = NdArrayBackend::cat(&tensors, 0);
        NdArrayBackend::reshape(&embedding, Shape::new([batch_size, seq_length, d_model]))
    }

    fn embedding_backward(
        weights: &NdArrayTensor<E, 2>,
        output: &NdArrayTensor<E, 3>,
        indexes: &NdArrayTensor<i64, 2>,
    ) -> NdArrayTensor<E, 2> {
        let [batch_size, seq_length] = indexes.shape.dims;
        let [_n_embedding, d_model] = weights.shape.dims;

        let mut weights_grad = weights.zeros();
        let output =
            NdArrayBackend::reshape(output, Shape::new([batch_size * seq_length, d_model]));

        for (index_output, index) in
            NdArrayBackend::reshape(indexes, Shape::new([batch_size * seq_length]))
                .array
                .iter()
                .enumerate()
        {
            let index = *index as usize;

            let weights_grad_current =
                NdArrayBackend::index(&weights_grad, [index..index + 1, 0..d_model]);
            let output_grad =
                NdArrayBackend::index(&output, [index_output..index_output + 1, 0..d_model]);

            weights_grad = NdArrayBackend::index_assign(
                &weights_grad,
                [index..index + 1, 0..d_model],
                &output_grad.add(weights_grad_current),
            );
        }

        weights_grad
    }
}