1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
use super::element::NdArrayElement;
use super::NdArrayTensor;
use burn_tensor::backend::Backend;
use burn_tensor::Data;
use burn_tensor::{Distribution, Shape};
use rand::rngs::StdRng;
use rand::SeedableRng;
use std::sync::Mutex;
static SEED: Mutex<Option<StdRng>> = Mutex::new(None);
#[derive(Clone, Copy, Debug)]
pub enum NdArrayDevice {
Cpu,
}
impl Default for NdArrayDevice {
fn default() -> Self {
Self::Cpu
}
}
#[derive(Clone, Copy, Default, Debug)]
pub struct NdArrayBackend<E> {
_e: E,
}
impl<E: NdArrayElement> Backend for NdArrayBackend<E> {
type Device = NdArrayDevice;
type Elem = E;
type FullPrecisionElem = f32;
type FullPrecisionBackend = NdArrayBackend<f32>;
type IntegerBackend = NdArrayBackend<i64>;
type TensorPrimitive<const D: usize> = NdArrayTensor<E, D>;
type BoolTensorPrimitive<const D: usize> = NdArrayTensor<bool, D>;
fn from_data<const D: usize>(
data: Data<Self::Elem, D>,
_device: Self::Device,
) -> NdArrayTensor<E, D> {
NdArrayTensor::from_data(data)
}
fn from_data_bool<const D: usize>(
data: Data<bool, D>,
_device: Self::Device,
) -> Self::BoolTensorPrimitive<D> {
NdArrayTensor::from_data(data)
}
fn ad_enabled() -> bool {
false
}
fn random<const D: usize>(
shape: Shape<D>,
distribution: Distribution<Self::Elem>,
device: Self::Device,
) -> Self::TensorPrimitive<D> {
let mut seed = SEED.lock().unwrap();
let mut rng: StdRng = match seed.as_ref() {
Some(rng) => rng.clone(),
None => StdRng::from_entropy(),
};
let tensor = Self::from_data(Data::random(shape, distribution, &mut rng), device);
*seed = Some(rng);
tensor
}
fn name() -> String {
"ndarray".to_string()
}
fn seed(seed: u64) {
let rng = StdRng::seed_from_u64(seed);
let mut seed = SEED.lock().unwrap();
*seed = Some(rng);
}
}