1use crate::rand::get_seeded_rng;
3use alloc::vec::Vec;
4use burn_tensor::backend::ExecutionError;
5use burn_tensor::{Distribution, ops::IntTensor};
6use burn_tensor::{IntDType, ops::IntTensorOps};
7use burn_tensor::{TensorMetadata, ops::FloatTensor};
8
9use burn_tensor::ElementConversion;
10
11use crate::{NdArray, cast_to_dtype, execute_with_dtype, tensor::NdArrayTensor};
13use crate::{NdArrayDevice, SEED};
14use crate::{SharedArray, element::QuantElement};
15use crate::{cat_with_dtype, execute_with_float_dtype};
16use crate::{element::FloatNdArrayElement, ops::matmul::matmul};
17use crate::{element::IntNdArrayElement, execute_with_int_dtype};
18
19use super::{NdArrayBitOps, NdArrayMathOps, NdArrayOps};
21use burn_tensor::{DType, Shape, TensorData, backend::Backend};
22
23impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> IntTensorOps<Self>
24 for NdArray<E, I, Q>
25where
26 NdArrayTensor: From<SharedArray<E>>,
27 NdArrayTensor: From<SharedArray<I>>,
28{
29 fn int_from_data(data: TensorData, _device: &NdArrayDevice) -> NdArrayTensor {
30 if data.dtype.is_int() || data.dtype.is_uint() {
31 NdArrayTensor::from_data(data)
32 } else {
33 unimplemented!("Unsupported dtype for `int_from_data`: {:?}", data.dtype)
34 }
35 }
36
37 async fn int_into_data(tensor: NdArrayTensor) -> Result<TensorData, ExecutionError> {
38 Ok(tensor.into_data())
39 }
40
41 fn int_to_device(tensor: NdArrayTensor, _device: &NdArrayDevice) -> NdArrayTensor {
42 tensor
43 }
44
45 fn int_reshape(tensor: NdArrayTensor, shape: Shape) -> NdArrayTensor {
46 execute_with_int_dtype!(tensor, |tensor| NdArrayOps::reshape(tensor, shape))
47 }
48
49 fn int_slice(tensor: NdArrayTensor, slices: &[burn_tensor::Slice]) -> NdArrayTensor {
50 execute_with_int_dtype!(tensor, |tensor| NdArrayOps::slice(tensor, slices))
51 }
52
53 fn int_device(_tensor: &NdArrayTensor) -> <NdArray<E> as Backend>::Device {
54 NdArrayDevice::Cpu
55 }
56
57 fn int_empty(
58 shape: Shape,
59 device: &<NdArray<E> as Backend>::Device,
60 dtype: IntDType,
61 ) -> NdArrayTensor {
62 Self::int_zeros(shape, device, dtype)
63 }
64
65 fn int_matmul(lhs: IntTensor<Self>, rhs: IntTensor<Self>) -> IntTensor<Self> {
66 execute_with_int_dtype!((lhs, rhs), matmul)
67 }
68
69 fn int_mask_where(
70 tensor: NdArrayTensor,
71 mask: NdArrayTensor,
72 source: NdArrayTensor,
73 ) -> NdArrayTensor {
74 execute_with_int_dtype!((tensor, source), |tensor, source| {
75 NdArrayMathOps::mask_where(tensor, mask.bool(), source)
76 })
77 }
78
79 fn int_mask_fill(tensor: NdArrayTensor, mask: NdArrayTensor, value: I) -> NdArrayTensor {
80 execute_with_int_dtype!(tensor, |tensor| NdArrayMathOps::mask_fill(
81 tensor,
82 mask.bool(),
83 value.elem()
84 ))
85 }
86
87 fn int_slice_assign(
88 tensor: NdArrayTensor,
89 slices: &[burn_tensor::Slice],
90 value: NdArrayTensor,
91 ) -> NdArrayTensor {
92 execute_with_int_dtype!((tensor, value), |tensor, value| NdArrayOps::slice_assign(
93 tensor, slices, value
94 ))
95 }
96
97 fn int_cat(tensors: Vec<NdArrayTensor>, dim: usize) -> NdArrayTensor {
98 cat_with_dtype!(tensors, dim, [I64, I32, I16, I8, U64, U32, U16, U8])
99 }
100
101 fn int_equal(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
102 execute_with_int_dtype!((lhs, rhs), NdArrayMathOps::equal)
103 }
104
105 fn int_equal_elem(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor {
106 execute_with_int_dtype!(lhs, |lhs| NdArrayMathOps::equal_elem(lhs, rhs.elem()))
107 }
108
109 fn int_greater(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
110 execute_with_int_dtype!((lhs, rhs), NdArrayMathOps::greater)
111 }
112
113 fn int_greater_elem(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor {
114 execute_with_int_dtype!(lhs, |lhs| NdArrayMathOps::greater_elem(lhs, rhs.elem()))
115 }
116
117 fn int_greater_equal(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
118 execute_with_int_dtype!((lhs, rhs), NdArrayMathOps::greater_equal)
119 }
120
121 fn int_greater_equal_elem(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor {
122 execute_with_int_dtype!(lhs, |lhs| NdArrayMathOps::greater_equal_elem(
123 lhs,
124 rhs.elem()
125 ))
126 }
127
128 fn int_lower(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
129 execute_with_int_dtype!((lhs, rhs), NdArrayMathOps::lower)
130 }
131
132 fn int_lower_elem(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor {
133 execute_with_int_dtype!(lhs, |lhs| NdArrayMathOps::lower_elem(lhs, rhs.elem()))
134 }
135
136 fn int_lower_equal(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
137 execute_with_int_dtype!((lhs, rhs), NdArrayMathOps::lower_equal)
138 }
139
140 fn int_lower_equal_elem(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor {
141 execute_with_int_dtype!(lhs, |lhs| NdArrayMathOps::lower_equal_elem(lhs, rhs.elem()))
142 }
143
144 fn int_add(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
145 execute_with_int_dtype!((lhs, rhs), NdArrayMathOps::add)
146 }
147
148 fn int_add_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor {
149 execute_with_int_dtype!(lhs, |lhs| NdArrayMathOps::add_scalar(lhs, rhs.elem()))
150 }
151
152 fn int_sub(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
153 execute_with_int_dtype!((lhs, rhs), NdArrayMathOps::sub)
154 }
155
156 fn int_sub_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor {
157 execute_with_int_dtype!(lhs, |lhs| NdArrayMathOps::sub_scalar(lhs, rhs.elem()))
158 }
159
160 fn int_mul(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
161 execute_with_int_dtype!((lhs, rhs), NdArrayMathOps::mul)
162 }
163
164 fn int_mul_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor {
165 execute_with_int_dtype!(lhs, |lhs| NdArrayMathOps::mul_scalar(lhs, rhs.elem()))
166 }
167
168 fn int_div(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
169 execute_with_int_dtype!((lhs, rhs), NdArrayMathOps::div)
170 }
171
172 fn int_div_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor {
173 execute_with_int_dtype!(lhs, |lhs| NdArrayMathOps::div_scalar(lhs, rhs.elem()))
174 }
175
176 fn int_remainder(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
177 execute_with_int_dtype!((lhs, rhs), NdArrayMathOps::remainder)
178 }
179
180 fn int_remainder_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor {
181 execute_with_int_dtype!(lhs, |lhs| NdArrayMathOps::remainder_scalar(lhs, rhs.elem()))
182 }
183
184 fn int_neg(tensor: NdArrayTensor) -> NdArrayTensor {
185 Self::int_mul_scalar(tensor, (-1).elem())
186 }
187
188 fn int_sum(tensor: NdArrayTensor) -> NdArrayTensor {
189 execute_with_int_dtype!(tensor, NdArrayMathOps::sum)
190 }
191
192 fn int_sum_dim(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor {
193 execute_with_int_dtype!(tensor, |tensor| NdArrayMathOps::sum_dim(tensor, dim))
194 }
195
196 fn int_prod(tensor: NdArrayTensor) -> NdArrayTensor {
197 execute_with_int_dtype!(tensor, NdArrayMathOps::prod)
198 }
199
200 fn int_prod_dim(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor {
201 execute_with_int_dtype!(tensor, |tensor| NdArrayMathOps::prod_dim(tensor, dim))
202 }
203
204 fn int_mean(tensor: NdArrayTensor) -> NdArrayTensor {
205 execute_with_int_dtype!(tensor, NdArrayMathOps::mean)
206 }
207
208 fn int_mean_dim(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor {
209 execute_with_int_dtype!(tensor, |tensor| NdArrayMathOps::mean_dim(tensor, dim))
210 }
211
212 fn int_cumsum(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor {
213 execute_with_int_dtype!(tensor, |tensor| NdArrayMathOps::cumsum(tensor, dim))
214 }
215
216 fn int_cumprod(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor {
217 execute_with_int_dtype!(tensor, |tensor| NdArrayMathOps::cumprod(tensor, dim))
218 }
219
220 fn int_cummin(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor {
221 execute_with_int_dtype!(tensor, |tensor| NdArrayMathOps::cummin(tensor, dim))
222 }
223
224 fn int_cummax(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor {
225 execute_with_int_dtype!(tensor, |tensor| NdArrayMathOps::cummax(tensor, dim))
226 }
227
228 fn int_gather(dim: usize, tensor: NdArrayTensor, indices: NdArrayTensor) -> NdArrayTensor {
229 execute_with_int_dtype!(tensor, E, |tensor: SharedArray<E>| -> NdArrayTensor {
230 execute_with_int_dtype!(indices, |indices| NdArrayMathOps::gather(
231 dim, tensor, indices
232 ))
233 })
234 }
235
236 fn int_scatter_add(
237 dim: usize,
238 tensor: NdArrayTensor,
239 indices: NdArrayTensor,
240 value: NdArrayTensor,
241 ) -> NdArrayTensor {
242 execute_with_int_dtype!((tensor, value), I, |tensor, value| -> NdArrayTensor {
243 execute_with_int_dtype!(indices, |indices| NdArrayMathOps::<I>::scatter(
244 dim, tensor, indices, value
245 ))
246 })
247 }
248
249 fn int_select(tensor: NdArrayTensor, dim: usize, indices: NdArrayTensor) -> NdArrayTensor {
250 execute_with_int_dtype!(tensor, E, |tensor: SharedArray<E>| -> NdArrayTensor {
251 execute_with_int_dtype!(indices, |indices| NdArrayMathOps::select(
252 tensor, dim, indices
253 ))
254 })
255 }
256
257 fn int_select_add(
258 tensor: NdArrayTensor,
259 dim: usize,
260 indices: NdArrayTensor,
261 value: NdArrayTensor,
262 ) -> NdArrayTensor {
263 execute_with_int_dtype!((tensor, value), I, |tensor, value| -> NdArrayTensor {
264 execute_with_int_dtype!(indices, |indices| NdArrayMathOps::<I>::select_assign(
265 tensor, dim, indices, value
266 ))
267 })
268 }
269 fn int_argmax(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor {
270 execute_with_int_dtype!(tensor, |tensor| NdArrayMathOps::argmax::<I>(tensor, dim))
271 }
272
273 fn int_argmin(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor {
274 execute_with_int_dtype!(tensor, |tensor| NdArrayMathOps::argmin::<I>(tensor, dim))
275 }
276
277 fn int_clamp_min(tensor: NdArrayTensor, min: I) -> NdArrayTensor {
278 execute_with_int_dtype!(tensor, |tensor| NdArrayMathOps::clamp_min(
279 tensor,
280 min.elem()
281 ))
282 }
283
284 fn int_clamp_max(tensor: NdArrayTensor, max: I) -> NdArrayTensor {
285 execute_with_int_dtype!(tensor, |tensor| NdArrayMathOps::clamp_max(
286 tensor,
287 max.elem()
288 ))
289 }
290
291 fn int_clamp(tensor: NdArrayTensor, min: I, max: I) -> NdArrayTensor {
292 execute_with_int_dtype!(tensor, |tensor| NdArrayMathOps::clamp(
293 tensor,
294 min.elem(),
295 max.elem()
296 ))
297 }
298
299 fn int_abs(tensor: NdArrayTensor) -> NdArrayTensor {
300 match tensor.dtype() {
301 DType::I64 | DType::I32 | DType::I16 | DType::I8 => {
302 execute_with_dtype!(tensor, I, NdArrayMathOps::abs, [
303 I64 => i64, I32 => i32, I16 => i16, I8 => i8
304 ])
305 }
306 DType::U64 | DType::U32 | DType::U16 | DType::U8 => tensor,
308 other => panic!("Unsupported dtype: {other:?}"),
309 }
310 }
311
312 fn int_into_float(tensor: NdArrayTensor) -> FloatTensor<Self> {
313 execute_with_int_dtype!(tensor, I, |t: SharedArray<I>| t
314 .mapv(|a| a.elem::<E>())
315 .into_shared())
316 }
317
318 fn int_swap_dims(tensor: NdArrayTensor, dim1: usize, dim2: usize) -> NdArrayTensor {
319 execute_with_int_dtype!(tensor, |tensor| NdArrayOps::swap_dims(tensor, dim1, dim2))
320 }
321
322 fn int_random(
323 shape: Shape,
324 distribution: Distribution,
325 device: &NdArrayDevice,
326 ) -> NdArrayTensor {
327 let mut seed = SEED.lock().unwrap();
328 let mut rng = if let Some(rng_seeded) = seed.as_ref() {
329 rng_seeded.clone()
330 } else {
331 get_seeded_rng()
332 };
333
334 let effective_distribution = if distribution == Distribution::Default {
335 Distribution::Uniform(0.0, 255.0) } else {
337 distribution
338 };
339
340 let tensor = Self::int_from_data(
341 TensorData::random::<I, _, _>(shape, effective_distribution, &mut rng),
342 device,
343 );
344 *seed = Some(rng);
345 tensor
346 }
347
348 fn int_powi(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
349 execute_with_int_dtype!((lhs, rhs), I, |lhs, rhs| NdArrayMathOps::elementwise_op(
350 lhs,
351 rhs,
352 |a: &I, b: &I| { (a.elem::<i64>().pow(b.elem::<u32>())).elem() }
353 ))
354 }
355
356 fn int_powf(lhs: NdArrayTensor, rhs: FloatTensor<Self>) -> NdArrayTensor {
357 execute_with_int_dtype!(lhs, I, |lhs| -> NdArrayTensor {
358 execute_with_float_dtype!(rhs, E, |rhs| {
359 NdArrayMathOps::elementwise_op(lhs, rhs, |a: &I, b: &E| {
360 (a.elem::<i64>().pow(*b as u32)).elem()
361 })
362 })
363 })
364 }
365
366 fn int_powf_scalar_impl(lhs: NdArrayTensor, rhs: f32) -> NdArrayTensor {
367 execute_with_int_dtype!(lhs, I, |lhs| {
368 NdArrayMathOps::elementwise_op_scalar(lhs, |a: I| {
369 (a.elem::<i64>().pow(rhs as u32)).elem()
370 })
371 })
372 }
373
374 fn int_permute(tensor: NdArrayTensor, axes: &[usize]) -> NdArrayTensor {
375 execute_with_int_dtype!(tensor, |tensor| NdArrayOps::permute(tensor, axes))
376 }
377
378 fn int_flip(tensor: NdArrayTensor, axes: &[usize]) -> NdArrayTensor {
379 execute_with_int_dtype!(tensor, |tensor| NdArrayOps::flip(tensor, axes))
380 }
381
382 fn int_sign(tensor: NdArrayTensor) -> NdArrayTensor {
383 match tensor.dtype() {
384 DType::I64 | DType::I32 | DType::I16 | DType::I8 => {
385 execute_with_dtype!(tensor, I, NdArrayMathOps::sign_op, [
386 I64 => i64, I32 => i32, I16 => i16, I8 => i8
387 ])
388 }
389 DType::U64 | DType::U32 | DType::U16 | DType::U8 => {
390 Self::int_greater_elem(tensor, 0.elem())
391 }
392 other => panic!("Unsupported dtype: {other:?}"),
393 }
394 }
395
396 fn int_expand(tensor: NdArrayTensor, shape: Shape) -> NdArrayTensor {
397 execute_with_int_dtype!(tensor, |tensor| NdArrayOps::expand(tensor, shape))
398 }
399
400 fn bitwise_and(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
401 execute_with_int_dtype!((lhs, rhs), NdArrayBitOps::bitand)
402 }
403
404 fn bitwise_and_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor {
405 execute_with_int_dtype!(lhs, |lhs| NdArrayBitOps::bitand_scalar(lhs, rhs.elem()))
406 }
407
408 fn bitwise_or(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
409 execute_with_int_dtype!((lhs, rhs), NdArrayBitOps::bitor)
410 }
411
412 fn bitwise_or_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor {
413 execute_with_int_dtype!(lhs, |lhs| NdArrayBitOps::bitor_scalar(lhs, rhs.elem()))
414 }
415
416 fn bitwise_xor(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
417 execute_with_int_dtype!((lhs, rhs), NdArrayBitOps::bitxor)
418 }
419
420 fn bitwise_xor_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor {
421 execute_with_int_dtype!(lhs, |lhs| NdArrayBitOps::bitxor_scalar(lhs, rhs.elem()))
422 }
423
424 fn bitwise_not(tensor: NdArrayTensor) -> NdArrayTensor {
425 execute_with_int_dtype!(tensor, NdArrayBitOps::bitnot)
426 }
427
428 fn bitwise_left_shift(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
429 execute_with_int_dtype!((lhs, rhs), I, |lhs, rhs| {
430 NdArrayMathOps::elementwise_op(lhs, rhs, |a: &I, b: &I| {
431 (a.elem::<i64>() << (b.elem::<u32>())).elem()
432 })
433 })
434 }
435
436 fn bitwise_left_shift_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor {
437 execute_with_int_dtype!(lhs, I, |lhs| {
438 NdArrayMathOps::elementwise_op_scalar(lhs, |a: I| {
439 (a.elem::<i64>() << rhs.elem::<u32>()).elem()
440 })
441 })
442 }
443
444 fn bitwise_right_shift(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
445 execute_with_int_dtype!((lhs, rhs), I, |lhs, rhs| {
446 NdArrayMathOps::elementwise_op(lhs, rhs, |a: &I, b: &I| {
447 (a.elem::<i64>() >> (b.elem::<u32>())).elem()
448 })
449 })
450 }
451
452 fn bitwise_right_shift_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor {
453 execute_with_int_dtype!(lhs, I, |lhs| {
454 NdArrayMathOps::elementwise_op_scalar(lhs, |a: I| {
455 (a.elem::<i64>() >> rhs.elem::<u32>()).elem()
456 })
457 })
458 }
459
460 fn int_cast(tensor: IntTensor<Self>, dtype: IntDType) -> IntTensor<Self> {
461 execute_with_int_dtype!(tensor, |tensor| cast_to_dtype(tensor, dtype.into()))
462 }
463
464 fn int_unfold(
465 tensor: IntTensor<Self>,
466 dim: usize,
467 size: usize,
468 step: usize,
469 ) -> IntTensor<Self> {
470 execute_with_int_dtype!(tensor, |tensor| NdArrayOps::unfold(tensor, dim, size, step))
471 }
472}