burn_ndarray/ops/
bool_tensor.rs1use alloc::vec;
3use alloc::vec::Vec;
4use burn_tensor::backend::ExecutionError;
5use burn_tensor::ops::{BoolTensorOps, FloatTensor, IntTensorOps};
6use burn_tensor::{ElementConversion, TensorMetadata};
7use ndarray::IntoDimension;
8
9use crate::element::{FloatNdArrayElement, IntNdArrayElement, QuantElement};
11use crate::{NdArray, execute_with_int_dtype, tensor::NdArrayTensor};
12use crate::{NdArrayDevice, SharedArray};
13
14use burn_tensor::{Shape, TensorData, backend::Backend};
16
17use super::{NdArrayBoolOps, NdArrayOps};
18
19impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> BoolTensorOps<Self>
20 for NdArray<E, I, Q>
21where
22 NdArrayTensor: From<SharedArray<E>>,
23 NdArrayTensor: From<SharedArray<I>>,
24{
25 fn bool_from_data(data: TensorData, _device: &NdArrayDevice) -> NdArrayTensor {
26 if !data.dtype.is_bool() {
27 unimplemented!("Unsupported dtype for `bool_from_data`")
28 }
29 NdArrayTensor::from_data(data)
30 }
31
32 async fn bool_into_data(tensor: NdArrayTensor) -> Result<TensorData, ExecutionError> {
33 Ok(tensor.into_data())
34 }
35
36 fn bool_to_device(tensor: NdArrayTensor, _device: &NdArrayDevice) -> NdArrayTensor {
37 tensor
38 }
39
40 fn bool_reshape(tensor: NdArrayTensor, shape: Shape) -> NdArrayTensor {
41 NdArrayOps::reshape(tensor.bool(), shape).into()
42 }
43
44 fn bool_slice(tensor: NdArrayTensor, slices: &[burn_tensor::Slice]) -> NdArrayTensor {
45 NdArrayOps::slice(tensor.bool(), slices).into()
46 }
47
48 fn bool_into_int(tensor: NdArrayTensor) -> NdArrayTensor {
49 let shape = tensor.shape();
50 let values = tensor.bool().into_iter().collect();
51 NdArray::<E, I>::int_from_data(
52 TensorData::new(values, shape).convert::<I>(),
53 &NdArrayDevice::Cpu,
54 )
55 }
56
57 fn bool_device(_tensor: &NdArrayTensor) -> <NdArray<E> as Backend>::Device {
58 NdArrayDevice::Cpu
59 }
60
61 fn bool_empty(shape: Shape, _device: &<NdArray<E> as Backend>::Device) -> NdArrayTensor {
62 Self::bool_zeros(shape, _device)
63 }
64
65 fn bool_zeros(shape: Shape, _device: &<NdArray<E> as Backend>::Device) -> NdArrayTensor {
66 let values = vec![false; shape.num_elements()];
67 NdArrayTensor::from_data(TensorData::new(values, shape))
68 }
69
70 fn bool_ones(shape: Shape, _device: &<NdArray<E> as Backend>::Device) -> NdArrayTensor {
71 let values = vec![true; shape.num_elements()];
72 NdArrayTensor::from_data(TensorData::new(values, shape))
73 }
74
75 fn bool_slice_assign(
76 tensor: NdArrayTensor,
77 slices: &[burn_tensor::Slice],
78 value: NdArrayTensor,
79 ) -> NdArrayTensor {
80 NdArrayOps::slice_assign(tensor.bool(), slices, value.bool()).into()
81 }
82
83 fn bool_cat(tensors: Vec<NdArrayTensor>, dim: usize) -> NdArrayTensor {
84 NdArrayOps::cat(tensors.into_iter().map(|it| it.bool()).collect(), dim).into()
85 }
86
87 fn bool_equal(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
88 NdArrayBoolOps::equal(lhs.bool(), rhs.bool()).into()
89 }
90
91 fn bool_not(tensor: NdArrayTensor) -> NdArrayTensor {
92 tensor.bool().mapv(|a| !a).into_shared().into()
93 }
94
95 fn bool_and(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
96 NdArrayBoolOps::and(lhs.bool(), rhs.bool()).into()
97 }
98
99 fn bool_or(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
100 NdArrayBoolOps::or(lhs.bool(), rhs.bool()).into()
101 }
102
103 fn bool_into_float(tensor: NdArrayTensor) -> FloatTensor<Self> {
104 let arr: SharedArray<E> = tensor.bool().mapv(|a| (a as i32).elem()).into_shared();
105 arr.into()
106 }
107
108 fn bool_swap_dims(tensor: NdArrayTensor, dim1: usize, dim2: usize) -> NdArrayTensor {
109 NdArrayOps::swap_dims(tensor.bool(), dim1, dim2).into()
110 }
111
112 fn bool_permute(tensor: NdArrayTensor, axes: &[usize]) -> NdArrayTensor {
113 tensor.bool().permuted_axes(axes.into_dimension()).into()
114 }
115
116 fn bool_expand(tensor: NdArrayTensor, shape: Shape) -> NdArrayTensor {
117 NdArrayOps::expand(tensor.bool(), shape).into()
118 }
119
120 fn bool_select(tensor: NdArrayTensor, dim: usize, indices: NdArrayTensor) -> NdArrayTensor {
121 execute_with_int_dtype!(indices, I, |indices: SharedArray<I>| -> NdArrayTensor {
122 let tensor_bool = tensor.bool();
123 let indices_vec: Vec<usize> = indices
124 .into_iter()
125 .map(|i| i.elem::<i64>() as usize)
126 .collect();
127
128 let selected = tensor_bool.select(ndarray::Axis(dim), &indices_vec);
129 selected.into_shared().into()
130 })
131 }
132
133 fn bool_select_assign(
134 tensor: NdArrayTensor,
135 dim: usize,
136 indices: NdArrayTensor,
137 value: NdArrayTensor,
138 ) -> NdArrayTensor {
139 execute_with_int_dtype!(indices, I, |indices: SharedArray<I>| -> NdArrayTensor {
140 let mut output_array = tensor.bool().into_owned();
141 let value_bool = value.bool();
142
143 for (index_value, index) in indices.into_iter().enumerate() {
144 let index_usize = index.elem::<i64>() as usize;
145 let mut view = output_array.index_axis_mut(ndarray::Axis(dim), index_usize);
146 let value_slice = value_bool.index_axis(ndarray::Axis(dim), index_value);
147 view.zip_mut_with(&value_slice, |a, b| *a = *a || *b);
149 }
150 output_array.into_shared().into()
151 })
152 }
153
154 fn bool_flip(tensor: NdArrayTensor, axes: &[usize]) -> NdArrayTensor {
155 NdArrayOps::flip(tensor.bool(), axes).into()
156 }
157
158 fn bool_unfold(tensor: NdArrayTensor, dim: usize, size: usize, step: usize) -> NdArrayTensor {
159 NdArrayOps::unfold(tensor.bool(), dim, size, step).into()
160 }
161}