use alloc::vec::Vec;
use core::ops::Range;
use ndarray::Zip;
use super::{matmul::matmul, NdArrayMathOps, NdArrayOps};
use crate::element::{FloatNdArrayElement, IntNdArrayElement, QuantElement};
use crate::{tensor::NdArrayTensor, NdArray};
use crate::{NdArrayDevice, SEED};
use burn_common::rand::get_seeded_rng;
use burn_tensor::Distribution;
use burn_tensor::{backend::Backend, ops::FloatTensorOps, ElementConversion, Shape, TensorData};
#[cfg(not(feature = "std"))]
#[allow(unused_imports)]
use num_traits::Float;
use libm::erf;
#[cfg(feature = "std")]
#[allow(dead_code)]
fn round_ties_even_wrapper(x: f64) -> f64 {
x.round_ties_even()
}
#[cfg(not(feature = "std"))]
#[allow(dead_code)]
fn round_ties_even_wrapper(x: f64) -> f64 {
if (x - x.floor()) == 0.5 {
(x * 0.5).round() * 2.0
} else {
x.round()
}
}
impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> FloatTensorOps<Self>
for NdArray<E, I, Q>
{
fn float_from_data(data: TensorData, _device: &NdArrayDevice) -> NdArrayTensor<E> {
NdArrayTensor::from_data(data)
}
fn float_random(
shape: Shape,
distribution: Distribution,
device: &NdArrayDevice,
) -> NdArrayTensor<E> {
let mut seed = SEED.lock().unwrap();
let mut rng = if let Some(rng_seeded) = seed.as_ref() {
rng_seeded.clone()
} else {
get_seeded_rng()
};
let tensor = Self::float_from_data(
TensorData::random::<E, _, _>(shape, distribution, &mut rng),
device,
);
*seed = Some(rng);
tensor
}
fn float_shape(tensor: &NdArrayTensor<E>) -> Shape {
tensor.shape()
}
async fn float_into_data(tensor: NdArrayTensor<E>) -> TensorData {
let shape = tensor.shape();
let values = tensor.array.into_iter().collect();
TensorData::new(values, shape)
}
fn float_device(_tensor: &NdArrayTensor<E>) -> NdArrayDevice {
NdArrayDevice::Cpu
}
fn float_to_device(tensor: NdArrayTensor<E>, _device: &NdArrayDevice) -> NdArrayTensor<E> {
tensor
}
fn float_empty(shape: Shape, device: &<NdArray<E> as Backend>::Device) -> NdArrayTensor<E> {
NdArray::<E>::float_zeros(shape, device)
}
fn float_add(lhs: NdArrayTensor<E>, rhs: NdArrayTensor<E>) -> NdArrayTensor<E> {
NdArrayMathOps::add(lhs, rhs)
}
fn float_add_scalar(lhs: NdArrayTensor<E>, rhs: E) -> NdArrayTensor<E> {
NdArrayMathOps::add_scalar(lhs, rhs)
}
fn float_sub(lhs: NdArrayTensor<E>, rhs: NdArrayTensor<E>) -> NdArrayTensor<E> {
NdArrayMathOps::sub(lhs, rhs)
}
fn float_sub_scalar(lhs: NdArrayTensor<E>, rhs: E) -> NdArrayTensor<E> {
NdArrayMathOps::sub_scalar(lhs, rhs)
}
fn float_mul(lhs: NdArrayTensor<E>, rhs: NdArrayTensor<E>) -> NdArrayTensor<E> {
NdArrayMathOps::mul(lhs, rhs)
}
fn float_mul_scalar(lhs: NdArrayTensor<E>, rhs: E) -> NdArrayTensor<E> {
NdArrayMathOps::mul_scalar(lhs, rhs)
}
fn float_div(lhs: NdArrayTensor<E>, rhs: NdArrayTensor<E>) -> NdArrayTensor<E> {
NdArrayMathOps::div(lhs, rhs)
}
fn float_div_scalar(lhs: NdArrayTensor<E>, rhs: E) -> NdArrayTensor<E> {
NdArrayMathOps::div_scalar(lhs, rhs)
}
fn float_remainder_scalar(lhs: NdArrayTensor<E>, rhs: E) -> NdArrayTensor<E> {
NdArrayMathOps::remainder_scalar(lhs, rhs)
}
fn float_matmul(lhs: NdArrayTensor<E>, rhs: NdArrayTensor<E>) -> NdArrayTensor<E> {
matmul(lhs, rhs)
}
fn float_neg(tensor: NdArrayTensor<E>) -> NdArrayTensor<E> {
Self::float_mul_scalar(tensor, (-1f32).elem::<E>())
}
fn float_recip(tensor: NdArrayTensor<E>) -> NdArrayTensor<E> {
NdArrayMathOps::recip(tensor)
}
fn float_swap_dims(tensor: NdArrayTensor<E>, dim1: usize, dim2: usize) -> NdArrayTensor<E> {
NdArrayOps::swap_dims(tensor, dim1, dim2)
}
fn float_reshape(tensor: NdArrayTensor<E>, shape: Shape) -> NdArrayTensor<E> {
NdArrayOps::reshape(tensor, shape)
}
fn float_gather(
dim: usize,
tensor: NdArrayTensor<E>,
indices: NdArrayTensor<I>,
) -> NdArrayTensor<E> {
NdArrayMathOps::gather(dim, tensor, indices)
}
fn float_scatter(
dim: usize,
tensor: NdArrayTensor<E>,
indices: NdArrayTensor<I>,
value: NdArrayTensor<E>,
) -> NdArrayTensor<E> {
NdArrayMathOps::scatter(dim, tensor, indices, value)
}
fn float_select(
tensor: NdArrayTensor<E>,
dim: usize,
indices: NdArrayTensor<I>,
) -> NdArrayTensor<E> {
NdArrayMathOps::select(tensor, dim, indices)
}
fn float_select_assign(
tensor: NdArrayTensor<E>,
dim: usize,
indices: NdArrayTensor<I>,
value: NdArrayTensor<E>,
) -> NdArrayTensor<E> {
NdArrayMathOps::select_assign(tensor, dim, indices, value)
}
fn float_slice(tensor: NdArrayTensor<E>, ranges: &[Range<usize>]) -> NdArrayTensor<E> {
NdArrayOps::slice(tensor, ranges)
}
fn float_slice_assign(
tensor: NdArrayTensor<E>,
ranges: &[Range<usize>],
value: NdArrayTensor<E>,
) -> NdArrayTensor<E> {
NdArrayOps::slice_assign(tensor, ranges, value)
}
fn float_mask_where(
tensor: NdArrayTensor<E>,
mask: NdArrayTensor<bool>,
value: NdArrayTensor<E>,
) -> NdArrayTensor<E> {
NdArrayMathOps::mask_where(tensor, mask, value)
}
fn float_mask_fill(
tensor: NdArrayTensor<E>,
mask: NdArrayTensor<bool>,
value: E,
) -> NdArrayTensor<E> {
NdArrayMathOps::mask_fill(tensor, mask, value)
}
fn float_equal(lhs: NdArrayTensor<E>, rhs: NdArrayTensor<E>) -> NdArrayTensor<bool> {
let output = Zip::from(&lhs.array)
.and(&rhs.array)
.map_collect(|&lhs_val, &rhs_val| (lhs_val == rhs_val))
.into_shared();
NdArrayTensor::new(output)
}
fn float_equal_elem(lhs: NdArrayTensor<E>, rhs: E) -> NdArrayTensor<bool> {
let array = lhs.array.mapv(|a| a == rhs).into_shared();
NdArrayTensor::new(array)
}
fn float_greater(lhs: NdArrayTensor<E>, rhs: NdArrayTensor<E>) -> NdArrayTensor<bool> {
let tensor = NdArray::<E>::float_sub(lhs, rhs);
let zero = 0.elem();
Self::float_greater_elem(tensor, zero)
}
fn float_greater_elem(lhs: NdArrayTensor<E>, rhs: E) -> NdArrayTensor<bool> {
let array = lhs.array.mapv(|a| a > rhs).into_shared();
NdArrayTensor::new(array)
}
fn float_greater_equal(lhs: NdArrayTensor<E>, rhs: NdArrayTensor<E>) -> NdArrayTensor<bool> {
let tensor = NdArray::<E>::float_sub(lhs, rhs);
let zero = 0.elem();
Self::float_greater_equal_elem(tensor, zero)
}
fn float_greater_equal_elem(lhs: NdArrayTensor<E>, rhs: E) -> NdArrayTensor<bool> {
let array = lhs.array.mapv(|a| a >= rhs).into_shared();
NdArrayTensor::new(array)
}
fn float_lower(lhs: NdArrayTensor<E>, rhs: NdArrayTensor<E>) -> NdArrayTensor<bool> {
let tensor = NdArray::<E>::float_sub(lhs, rhs);
let zero = 0.elem();
Self::float_lower_elem(tensor, zero)
}
fn float_lower_elem(lhs: NdArrayTensor<E>, rhs: E) -> NdArrayTensor<bool> {
let array = lhs.array.mapv(|a| a < rhs).into_shared();
NdArrayTensor::new(array)
}
fn float_lower_equal(lhs: NdArrayTensor<E>, rhs: NdArrayTensor<E>) -> NdArrayTensor<bool> {
let tensor = NdArray::<E>::float_sub(lhs, rhs);
let zero = 0.elem();
Self::float_lower_equal_elem(tensor, zero)
}
fn float_lower_equal_elem(lhs: NdArrayTensor<E>, rhs: E) -> NdArrayTensor<bool> {
let array = lhs.array.mapv(|a| a <= rhs).into_shared();
NdArrayTensor::new(array)
}
fn float_detach(tensor: NdArrayTensor<E>) -> NdArrayTensor<E> {
tensor
}
fn float_mean(tensor: NdArrayTensor<E>) -> NdArrayTensor<E> {
NdArrayMathOps::mean(tensor)
}
fn float_sum(tensor: NdArrayTensor<E>) -> NdArrayTensor<E> {
NdArrayMathOps::sum(tensor)
}
fn float_mean_dim(tensor: NdArrayTensor<E>, dim: usize) -> NdArrayTensor<E> {
NdArrayMathOps::mean_dim(tensor, dim)
}
fn float_sum_dim(tensor: NdArrayTensor<E>, dim: usize) -> NdArrayTensor<E> {
NdArrayMathOps::sum_dim(tensor, dim)
}
fn float_argmax(tensor: NdArrayTensor<E>, dim: usize) -> NdArrayTensor<I> {
NdArrayMathOps::argmax(tensor, dim)
}
fn float_argmin(tensor: NdArrayTensor<E>, dim: usize) -> NdArrayTensor<I> {
NdArrayMathOps::argmin(tensor, dim)
}
fn float_exp(tensor: NdArrayTensor<E>) -> NdArrayTensor<E> {
let array = tensor.array.mapv_into(|a| a.exp_elem()).into_shared();
NdArrayTensor::new(array)
}
fn float_log(tensor: NdArrayTensor<E>) -> NdArrayTensor<E> {
let array = tensor.array.mapv_into(|a| a.log_elem()).into_shared();
NdArrayTensor::new(array)
}
fn float_log1p(tensor: NdArrayTensor<E>) -> NdArrayTensor<E> {
let array = tensor.array.mapv_into(|a| a.log1p_elem()).into_shared();
NdArrayTensor::new(array)
}
fn float_powf_scalar(tensor: NdArrayTensor<E>, value: f32) -> NdArrayTensor<E> {
let array = if value == 2.0 {
tensor.array.mapv_into(|a| a * a).into_shared()
} else if value.floor() == value {
tensor
.array
.mapv_into(|a| a.powi_elem(value as i32))
.into_shared()
} else {
tensor.array.mapv_into(|a| a.powf_elem(value)).into_shared()
};
NdArrayTensor::new(array)
}
fn float_sqrt(tensor: NdArrayTensor<E>) -> NdArrayTensor<E> {
let array = tensor.array.mapv_into(|a| a.sqrt_elem()).into_shared();
NdArrayTensor::new(array)
}
fn float_abs(tensor: NdArrayTensor<E>) -> NdArrayTensor<E> {
let array = tensor.array.mapv_into(|a| a.abs_elem()).into_shared();
NdArrayTensor::new(array)
}
fn float_cos(tensor: NdArrayTensor<E>) -> NdArrayTensor<E> {
let array = tensor
.array
.mapv_into(|a| (a.to_f64()).cos().elem())
.into_shared();
NdArrayTensor::new(array)
}
fn float_sin(tensor: NdArrayTensor<E>) -> NdArrayTensor<E> {
let array = tensor
.array
.mapv_into(|a| (a.to_f64()).sin().elem())
.into_shared();
NdArrayTensor::new(array)
}
fn float_tanh(tensor: NdArrayTensor<E>) -> NdArrayTensor<E> {
let array = tensor
.array
.mapv_into(|a| (a.to_f64()).tanh().elem())
.into_shared();
NdArrayTensor::new(array)
}
fn float_round(tensor: NdArrayTensor<E>) -> NdArrayTensor<E> {
let array = tensor
.array
.mapv_into(|a| round_ties_even_wrapper(a.to_f64()).elem())
.into_shared();
NdArrayTensor::new(array)
}
fn float_floor(tensor: NdArrayTensor<E>) -> NdArrayTensor<E> {
let array = tensor
.array
.mapv_into(|a| (a.to_f64()).floor().elem())
.into_shared();
NdArrayTensor::new(array)
}
fn float_ceil(tensor: NdArrayTensor<E>) -> NdArrayTensor<E> {
let array = tensor
.array
.mapv_into(|a| (a.to_f64()).ceil().elem())
.into_shared();
NdArrayTensor::new(array)
}
fn float_erf(tensor: NdArrayTensor<E>) -> NdArrayTensor<E> {
let array = tensor
.array
.mapv_into(|a| erf(a.to_f64()).elem())
.into_shared();
NdArrayTensor::new(array)
}
fn float_cat(tensors: Vec<NdArrayTensor<E>>, dim: usize) -> NdArrayTensor<E> {
NdArrayOps::cat(tensors, dim)
}
fn float_clamp_min(tensor: NdArrayTensor<E>, min: E) -> NdArrayTensor<E> {
NdArrayMathOps::clamp_min(tensor, min)
}
fn float_clamp_max(tensor: NdArrayTensor<E>, max: E) -> NdArrayTensor<E> {
NdArrayMathOps::clamp_max(tensor, max)
}
fn float_clamp(tensor: NdArrayTensor<E>, min: E, max: E) -> NdArrayTensor<E> {
NdArrayMathOps::clamp(tensor, min, max)
}
fn float_into_int(tensor: NdArrayTensor<E>) -> NdArrayTensor<I> {
let array = tensor.array.mapv(|a| a.elem()).into_shared();
NdArrayTensor { array }
}
fn float_powf(lhs: NdArrayTensor<E>, rhs: NdArrayTensor<E>) -> NdArrayTensor<E> {
NdArrayMathOps::elementwise_op(lhs, rhs, |a, b| a.powf_elem(b.to_f32()))
}
fn float_permute(tensor: NdArrayTensor<E>, axes: &[usize]) -> NdArrayTensor<E> {
NdArrayOps::permute(tensor, axes)
}
fn float_flip(tensor: NdArrayTensor<E>, axes: &[usize]) -> NdArrayTensor<E> {
NdArrayOps::flip(tensor, axes)
}
fn float_sign(tensor: NdArrayTensor<E>) -> NdArrayTensor<E> {
NdArrayMathOps::sign_op(tensor)
}
fn float_expand(tensor: NdArrayTensor<E>, shape: Shape) -> NdArrayTensor<E> {
NdArrayOps::expand(tensor, shape)
}
}