burn_ndarray/ops/
bool_tensor.rsuse alloc::vec;
use alloc::vec::Vec;
use burn_tensor::ops::{BoolTensorOps, IntTensorOps};
use burn_tensor::ElementConversion;
use core::ops::Range;
use ndarray::{IntoDimension, Zip};
use crate::element::{FloatNdArrayElement, IntNdArrayElement, QuantElement};
use crate::NdArrayDevice;
use crate::{tensor::NdArrayTensor, NdArray};
use burn_tensor::{backend::Backend, Shape, TensorData};
use super::NdArrayOps;
impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> BoolTensorOps<Self>
for NdArray<E, I, Q>
{
fn bool_from_data(data: TensorData, _device: &NdArrayDevice) -> NdArrayTensor<bool> {
NdArrayTensor::from_data(data)
}
fn bool_shape(tensor: &NdArrayTensor<bool>) -> Shape {
tensor.shape()
}
async fn bool_into_data(tensor: NdArrayTensor<bool>) -> TensorData {
let shape = tensor.shape();
let values = tensor.array.into_iter().collect();
TensorData::new(values, shape)
}
fn bool_to_device(tensor: NdArrayTensor<bool>, _device: &NdArrayDevice) -> NdArrayTensor<bool> {
tensor
}
fn bool_reshape(tensor: NdArrayTensor<bool>, shape: Shape) -> NdArrayTensor<bool> {
NdArrayOps::reshape(tensor, shape)
}
fn bool_slice(tensor: NdArrayTensor<bool>, ranges: &[Range<usize>]) -> NdArrayTensor<bool> {
NdArrayOps::slice(tensor, ranges)
}
fn bool_into_int(tensor: NdArrayTensor<bool>) -> NdArrayTensor<I> {
let shape = tensor.shape();
let values = tensor.array.into_iter().collect();
NdArray::<E, I>::int_from_data(
TensorData::new(values, shape).convert::<I>(),
&NdArrayDevice::Cpu,
)
}
fn bool_device(_tensor: &NdArrayTensor<bool>) -> <NdArray<E> as Backend>::Device {
NdArrayDevice::Cpu
}
fn bool_empty(shape: Shape, _device: &<NdArray<E> as Backend>::Device) -> NdArrayTensor<bool> {
let values = vec![false; shape.num_elements()];
NdArrayTensor::from_data(TensorData::new(values, shape))
}
fn bool_slice_assign(
tensor: NdArrayTensor<bool>,
ranges: &[Range<usize>],
value: NdArrayTensor<bool>,
) -> NdArrayTensor<bool> {
NdArrayOps::slice_assign(tensor, ranges, value)
}
fn bool_cat(tensors: Vec<NdArrayTensor<bool>>, dim: usize) -> NdArrayTensor<bool> {
NdArrayOps::cat(tensors, dim)
}
fn bool_equal(lhs: NdArrayTensor<bool>, rhs: NdArrayTensor<bool>) -> NdArrayTensor<bool> {
let output = Zip::from(&lhs.array)
.and(&rhs.array)
.map_collect(|&lhs_val, &rhs_val| (lhs_val == rhs_val))
.into_shared();
NdArrayTensor::new(output)
}
fn bool_not(tensor: NdArrayTensor<bool>) -> NdArrayTensor<bool> {
let array = tensor.array.mapv(|a| !a).into_shared();
NdArrayTensor { array }
}
fn bool_into_float(
tensor: NdArrayTensor<bool>,
) -> <NdArray<E> as Backend>::FloatTensorPrimitive {
let array = tensor.array.mapv(|a| (a as i32).elem()).into_shared();
NdArrayTensor { array }
}
fn bool_swap_dims(
tensor: NdArrayTensor<bool>,
dim1: usize,
dim2: usize,
) -> NdArrayTensor<bool> {
NdArrayOps::swap_dims(tensor, dim1, dim2)
}
fn bool_permute(tensor: NdArrayTensor<bool>, axes: &[usize]) -> NdArrayTensor<bool> {
let array = tensor.array.permuted_axes(axes.into_dimension());
NdArrayTensor { array }
}
fn bool_expand(tensor: NdArrayTensor<bool>, shape: Shape) -> NdArrayTensor<bool> {
NdArrayOps::expand(tensor, shape)
}
fn bool_flip(tensor: NdArrayTensor<bool>, axes: &[usize]) -> NdArrayTensor<bool> {
NdArrayOps::flip(tensor, axes)
}
}