use alloc::vec::Vec;
use core::ops::Range;
use ndarray::{IntoDimension, Zip};
use super::{matmul::matmul, NdArrayMathOps, NdArrayOps};
use crate::element::{FloatNdArrayElement, QuantElement};
use crate::{tensor::NdArrayTensor, NdArray};
use crate::{NdArrayDevice, SEED};
use burn_common::rand::get_seeded_rng;
use burn_tensor::Distribution;
use burn_tensor::{backend::Backend, ops::FloatTensorOps, ElementConversion, Shape, TensorData};
#[cfg(not(feature = "std"))]
#[allow(unused_imports)]
use num_traits::Float;
use libm::erf;
impl<E: FloatNdArrayElement, Q: QuantElement> FloatTensorOps<Self> for NdArray<E, Q> {
fn float_from_data<const D: usize>(
data: TensorData,
_device: &NdArrayDevice,
) -> NdArrayTensor<E, D> {
NdArrayTensor::from_data(data)
}
fn float_random<const D: usize>(
shape: Shape<D>,
distribution: Distribution,
device: &NdArrayDevice,
) -> NdArrayTensor<E, D> {
let mut seed = SEED.lock().unwrap();
let mut rng = if let Some(rng_seeded) = seed.as_ref() {
rng_seeded.clone()
} else {
get_seeded_rng()
};
let tensor = Self::float_from_data(
TensorData::random::<E, _, _>(shape, distribution, &mut rng),
device,
);
*seed = Some(rng);
tensor
}
fn float_shape<const D: usize>(tensor: &NdArrayTensor<E, D>) -> Shape<D> {
tensor.shape()
}
async fn float_into_data<const D: usize>(tensor: NdArrayTensor<E, D>) -> TensorData {
let shape = tensor.shape();
let values = tensor.array.into_iter().collect();
TensorData::new(values, shape)
}
fn float_device<const D: usize>(_tensor: &NdArrayTensor<E, D>) -> NdArrayDevice {
NdArrayDevice::Cpu
}
fn float_to_device<const D: usize>(
tensor: NdArrayTensor<E, D>,
_device: &NdArrayDevice,
) -> NdArrayTensor<E, D> {
tensor
}
fn float_empty<const D: usize>(
shape: Shape<D>,
device: &<NdArray<E> as Backend>::Device,
) -> NdArrayTensor<E, D> {
NdArray::<E>::float_zeros(shape, device)
}
fn float_add<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>,
) -> NdArrayTensor<E, D> {
NdArrayMathOps::add(lhs, rhs)
}
fn float_add_scalar<const D: usize>(lhs: NdArrayTensor<E, D>, rhs: E) -> NdArrayTensor<E, D> {
NdArrayMathOps::add_scalar(lhs, rhs)
}
fn float_sub<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>,
) -> NdArrayTensor<E, D> {
NdArrayMathOps::sub(lhs, rhs)
}
fn float_sub_scalar<const D: usize>(lhs: NdArrayTensor<E, D>, rhs: E) -> NdArrayTensor<E, D> {
NdArrayMathOps::sub_scalar(lhs, rhs)
}
fn float_mul<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>,
) -> NdArrayTensor<E, D> {
NdArrayMathOps::mul(lhs, rhs)
}
fn float_mul_scalar<const D: usize>(lhs: NdArrayTensor<E, D>, rhs: E) -> NdArrayTensor<E, D> {
NdArrayMathOps::mul_scalar(lhs, rhs)
}
fn float_div<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>,
) -> NdArrayTensor<E, D> {
NdArrayMathOps::div(lhs, rhs)
}
fn float_div_scalar<const D: usize>(lhs: NdArrayTensor<E, D>, rhs: E) -> NdArrayTensor<E, D> {
NdArrayMathOps::div_scalar(lhs, rhs)
}
fn float_remainder_scalar<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: E,
) -> NdArrayTensor<E, D> {
NdArrayMathOps::remainder_scalar(lhs, rhs)
}
fn float_matmul<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>,
) -> NdArrayTensor<E, D> {
matmul(lhs, rhs)
}
fn float_neg<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D> {
Self::float_mul_scalar(tensor, (-1f32).elem::<E>())
}
fn float_recip<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D> {
NdArrayMathOps::recip(tensor)
}
fn float_swap_dims<const D: usize>(
tensor: NdArrayTensor<E, D>,
dim1: usize,
dim2: usize,
) -> NdArrayTensor<E, D> {
NdArrayOps::swap_dims(tensor, dim1, dim2)
}
fn float_reshape<const D1: usize, const D2: usize>(
tensor: NdArrayTensor<E, D1>,
shape: Shape<D2>,
) -> NdArrayTensor<E, D2> {
NdArrayOps::reshape(tensor, shape)
}
fn float_gather<const D: usize>(
dim: usize,
tensor: NdArrayTensor<E, D>,
indices: NdArrayTensor<i64, D>,
) -> NdArrayTensor<E, D> {
NdArrayMathOps::gather(dim, tensor, indices)
}
fn float_scatter<const D: usize>(
dim: usize,
tensor: NdArrayTensor<E, D>,
indices: NdArrayTensor<i64, D>,
value: NdArrayTensor<E, D>,
) -> NdArrayTensor<E, D> {
NdArrayMathOps::scatter(dim, tensor, indices, value)
}
fn float_select<const D: usize>(
tensor: NdArrayTensor<E, D>,
dim: usize,
indices: NdArrayTensor<i64, 1>,
) -> NdArrayTensor<E, D> {
NdArrayMathOps::select(tensor, dim, indices)
}
fn float_select_assign<const D: usize>(
tensor: NdArrayTensor<E, D>,
dim: usize,
indices: NdArrayTensor<i64, 1>,
value: NdArrayTensor<E, D>,
) -> NdArrayTensor<E, D> {
NdArrayMathOps::select_assign(tensor, dim, indices, value)
}
fn float_slice<const D1: usize, const D2: usize>(
tensor: NdArrayTensor<E, D1>,
ranges: [Range<usize>; D2],
) -> NdArrayTensor<E, D1> {
NdArrayOps::slice(tensor, ranges)
}
fn float_slice_assign<const D1: usize, const D2: usize>(
tensor: NdArrayTensor<E, D1>,
ranges: [Range<usize>; D2],
value: NdArrayTensor<E, D1>,
) -> NdArrayTensor<E, D1> {
NdArrayOps::slice_assign(tensor, ranges, value)
}
fn float_mask_where<const D: usize>(
tensor: NdArrayTensor<E, D>,
mask: NdArrayTensor<bool, D>,
value: NdArrayTensor<E, D>,
) -> NdArrayTensor<E, D> {
NdArrayMathOps::mask_where(tensor, mask, value)
}
fn float_mask_fill<const D: usize>(
tensor: NdArrayTensor<E, D>,
mask: NdArrayTensor<bool, D>,
value: E,
) -> NdArrayTensor<E, D> {
NdArrayMathOps::mask_fill(tensor, mask, value)
}
fn float_equal<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>,
) -> NdArrayTensor<bool, D> {
let output = Zip::from(&lhs.array)
.and(&rhs.array)
.map_collect(|&lhs_val, &rhs_val| (lhs_val == rhs_val))
.into_shared();
NdArrayTensor::new(output)
}
fn float_equal_elem<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: E,
) -> NdArrayTensor<bool, D> {
let array = lhs.array.mapv(|a| a == rhs).into_shared();
NdArrayTensor::new(array)
}
fn float_greater<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>,
) -> NdArrayTensor<bool, D> {
let tensor = NdArray::<E>::float_sub(lhs, rhs);
let zero = 0.elem();
Self::float_greater_elem(tensor, zero)
}
fn float_greater_elem<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: E,
) -> NdArrayTensor<bool, D> {
let array = lhs.array.mapv(|a| a > rhs).into_shared();
NdArrayTensor::new(array)
}
fn float_greater_equal<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>,
) -> NdArrayTensor<bool, D> {
let tensor = NdArray::<E>::float_sub(lhs, rhs);
let zero = 0.elem();
Self::float_greater_equal_elem(tensor, zero)
}
fn float_greater_equal_elem<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: E,
) -> NdArrayTensor<bool, D> {
let array = lhs.array.mapv(|a| a >= rhs).into_shared();
NdArrayTensor::new(array)
}
fn float_lower<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>,
) -> NdArrayTensor<bool, D> {
let tensor = NdArray::<E>::float_sub(lhs, rhs);
let zero = 0.elem();
Self::float_lower_elem(tensor, zero)
}
fn float_lower_elem<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: E,
) -> NdArrayTensor<bool, D> {
let array = lhs.array.mapv(|a| a < rhs).into_shared();
NdArrayTensor::new(array)
}
fn float_lower_equal<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>,
) -> NdArrayTensor<bool, D> {
let tensor = NdArray::<E>::float_sub(lhs, rhs);
let zero = 0.elem();
Self::float_lower_equal_elem(tensor, zero)
}
fn float_lower_equal_elem<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: E,
) -> NdArrayTensor<bool, D> {
let array = lhs.array.mapv(|a| a <= rhs).into_shared();
NdArrayTensor::new(array)
}
fn float_detach<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D> {
tensor
}
fn float_mean<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, 1> {
NdArrayMathOps::mean(tensor)
}
fn float_sum<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, 1> {
NdArrayMathOps::sum(tensor)
}
fn float_mean_dim<const D: usize>(
tensor: NdArrayTensor<E, D>,
dim: usize,
) -> NdArrayTensor<E, D> {
NdArrayMathOps::mean_dim(tensor, dim)
}
fn float_sum_dim<const D: usize>(
tensor: NdArrayTensor<E, D>,
dim: usize,
) -> NdArrayTensor<E, D> {
NdArrayMathOps::sum_dim(tensor, dim)
}
fn float_argmax<const D: usize>(
tensor: NdArrayTensor<E, D>,
dim: usize,
) -> NdArrayTensor<i64, D> {
NdArrayMathOps::argmax(tensor, dim)
}
fn float_argmin<const D: usize>(
tensor: NdArrayTensor<E, D>,
dim: usize,
) -> NdArrayTensor<i64, D> {
NdArrayMathOps::argmin(tensor, dim)
}
fn float_exp<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D> {
let array = tensor.array.mapv_into(|a| a.exp_elem()).into_shared();
NdArrayTensor::new(array)
}
fn float_log<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D> {
let array = tensor.array.mapv_into(|a| a.log_elem()).into_shared();
NdArrayTensor::new(array)
}
fn float_log1p<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D> {
let array = tensor.array.mapv_into(|a| a.log1p_elem()).into_shared();
NdArrayTensor::new(array)
}
fn float_powf_scalar<const D: usize>(
tensor: NdArrayTensor<E, D>,
value: f32,
) -> NdArrayTensor<E, D> {
let array = if value == 2.0 {
tensor.array.mapv_into(|a| a * a).into_shared()
} else if value.floor() == value {
tensor
.array
.mapv_into(|a| a.powi_elem(value as i32))
.into_shared()
} else {
tensor.array.mapv_into(|a| a.powf_elem(value)).into_shared()
};
NdArrayTensor::new(array)
}
fn float_sqrt<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D> {
let array = tensor.array.mapv_into(|a| a.sqrt_elem()).into_shared();
NdArrayTensor::new(array)
}
fn float_abs<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D> {
let array = tensor.array.mapv_into(|a| a.abs_elem()).into_shared();
NdArrayTensor::new(array)
}
fn float_cos<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D> {
let array = tensor
.array
.mapv_into(|a| (a.to_f64()).cos().elem())
.into_shared();
NdArrayTensor::new(array)
}
fn float_sin<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D> {
let array = tensor
.array
.mapv_into(|a| (a.to_f64()).sin().elem())
.into_shared();
NdArrayTensor::new(array)
}
fn float_tanh<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D> {
let array = tensor
.array
.mapv_into(|a| (a.to_f64()).tanh().elem())
.into_shared();
NdArrayTensor::new(array)
}
fn float_erf<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D> {
let array = tensor
.array
.mapv_into(|a| erf(a.to_f64()).elem())
.into_shared();
NdArrayTensor::new(array)
}
fn float_cat<const D: usize>(
tensors: Vec<NdArrayTensor<E, D>>,
dim: usize,
) -> NdArrayTensor<E, D> {
NdArrayOps::cat(tensors, dim)
}
fn float_clamp_min<const D: usize>(tensor: NdArrayTensor<E, D>, min: E) -> NdArrayTensor<E, D> {
NdArrayMathOps::clamp_min(tensor, min)
}
fn float_clamp_max<const D: usize>(tensor: NdArrayTensor<E, D>, max: E) -> NdArrayTensor<E, D> {
NdArrayMathOps::clamp_max(tensor, max)
}
fn float_clamp<const D: usize>(
tensor: NdArrayTensor<E, D>,
min: E,
max: E,
) -> NdArrayTensor<E, D> {
NdArrayMathOps::clamp(tensor, min, max)
}
fn float_into_int<const D: usize>(
tensor: <NdArray<E> as Backend>::FloatTensorPrimitive<D>,
) -> <NdArray<E> as Backend>::IntTensorPrimitive<D> {
let array = tensor.array.mapv(|a| a.elem()).into_shared();
NdArrayTensor { array }
}
fn float_powf<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>,
) -> NdArrayTensor<E, D> {
NdArrayMathOps::elementwise_op(lhs, rhs, |a, b| a.powf_elem(b.to_f32()))
}
fn float_permute<const D: usize>(
tensor: burn_tensor::ops::FloatTensor<Self, D>,
axes: [usize; D],
) -> burn_tensor::ops::FloatTensor<Self, D> {
let array = tensor.array.permuted_axes(axes.into_dimension());
NdArrayTensor { array }
}
fn float_flip<const D: usize>(
tensor: burn_tensor::ops::FloatTensor<Self, D>,
axes: &[usize],
) -> burn_tensor::ops::FloatTensor<Self, D> {
NdArrayOps::flip(tensor, axes)
}
fn float_sign<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D> {
NdArrayMathOps::sign_op(tensor)
}
fn float_expand<const D1: usize, const D2: usize>(
tensor: burn_tensor::ops::FloatTensor<Self, D1>,
shape: Shape<D2>,
) -> burn_tensor::ops::FloatTensor<Self, D2> {
NdArrayOps::expand(tensor, shape)
}
}