use super::{
adaptive_avgpool::{adaptive_avg_pool2d, adaptive_avg_pool2d_backward},
avgpool::{avg_pool2d, avg_pool2d_backward},
conv::{conv2d, conv3d, conv_transpose2d, conv_transpose3d},
interpolate::{bicubic_interpolate, bilinear_interpolate, nearest_interpolate},
maxpool::{max_pool2d, max_pool2d_backward, max_pool2d_with_indices},
};
use crate::{element::FloatNdArrayElement, tensor::NdArrayTensor, NdArray};
use crate::{element::QuantElement, ops::interpolate::nearest_interpolate_backward};
use burn_tensor::ops::*;
impl<E: FloatNdArrayElement, Q: QuantElement> ModuleOps<Self> for NdArray<E, Q> {
fn conv2d(
x: NdArrayTensor<E, 4>,
weight: NdArrayTensor<E, 4>,
bias: Option<NdArrayTensor<E, 1>>,
options: ConvOptions<2>,
) -> NdArrayTensor<E, 4> {
conv2d::<E, Q>(x, weight, bias, options)
}
fn conv_transpose2d(
x: NdArrayTensor<E, 4>,
weight: NdArrayTensor<E, 4>,
bias: Option<NdArrayTensor<E, 1>>,
options: ConvTransposeOptions<2>,
) -> NdArrayTensor<E, 4> {
conv_transpose2d(x, weight, bias, options)
}
fn avg_pool2d(
x: NdArrayTensor<E, 4>,
kernel_size: [usize; 2],
stride: [usize; 2],
padding: [usize; 2],
count_include_pad: bool,
) -> NdArrayTensor<E, 4> {
avg_pool2d(x, kernel_size, stride, padding, count_include_pad)
}
fn avg_pool2d_backward(
x: NdArrayTensor<E, 4>,
grad: NdArrayTensor<E, 4>,
kernel_size: [usize; 2],
stride: [usize; 2],
padding: [usize; 2],
count_include_pad: bool,
) -> NdArrayTensor<E, 4> {
avg_pool2d_backward(x, grad, kernel_size, stride, padding, count_include_pad)
}
fn max_pool2d(
x: NdArrayTensor<E, 4>,
kernel_size: [usize; 2],
stride: [usize; 2],
padding: [usize; 2],
dilation: [usize; 2],
) -> NdArrayTensor<E, 4> {
max_pool2d::<E, Q>(x, kernel_size, stride, padding, dilation)
}
fn max_pool2d_with_indices(
x: NdArrayTensor<E, 4>,
kernel_size: [usize; 2],
stride: [usize; 2],
padding: [usize; 2],
dilation: [usize; 2],
) -> MaxPool2dWithIndices<NdArray<E, Q>> {
let (output, indices) =
max_pool2d_with_indices::<E, Q>(x, kernel_size, stride, padding, dilation);
MaxPool2dWithIndices::new(output, indices)
}
fn max_pool2d_with_indices_backward(
x: NdArrayTensor<E, 4>,
kernel_size: [usize; 2],
stride: [usize; 2],
padding: [usize; 2],
dilation: [usize; 2],
output_grad: NdArrayTensor<E, 4>,
indices: NdArrayTensor<i64, 4>,
) -> MaxPool2dBackward<NdArray<E, Q>> {
MaxPool2dBackward::new(max_pool2d_backward(
x,
kernel_size,
stride,
padding,
dilation,
output_grad,
indices,
))
}
fn adaptive_avg_pool2d(x: NdArrayTensor<E, 4>, output_size: [usize; 2]) -> NdArrayTensor<E, 4> {
adaptive_avg_pool2d(x, output_size)
}
fn adaptive_avg_pool2d_backward(
x: NdArrayTensor<E, 4>,
grad: NdArrayTensor<E, 4>,
) -> NdArrayTensor<E, 4> {
adaptive_avg_pool2d_backward(x, grad)
}
fn interpolate(
x: NdArrayTensor<E, 4>,
output_size: [usize; 2],
options: InterpolateOptions,
) -> NdArrayTensor<E, 4> {
match options.mode {
InterpolateMode::Nearest => nearest_interpolate(x, output_size),
InterpolateMode::Bilinear => bilinear_interpolate(x, output_size),
InterpolateMode::Bicubic => bicubic_interpolate(x, output_size),
}
}
fn interpolate_backward(
x: NdArrayTensor<E, 4>,
grad: NdArrayTensor<E, 4>,
output_size: [usize; 2],
options: InterpolateOptions,
) -> NdArrayTensor<E, 4> {
match options.mode {
InterpolateMode::Nearest => nearest_interpolate_backward(x, grad, output_size),
InterpolateMode::Bilinear => {
panic!("bilinear interpolation backward is not supported for ndarray backend")
}
InterpolateMode::Bicubic => {
panic!("bicubic interpolation backward is not supported for ndarray backend")
}
}
}
fn conv3d(
x: NdArrayTensor<E, 5>,
weight: NdArrayTensor<E, 5>,
bias: Option<NdArrayTensor<E, 1>>,
options: ConvOptions<3>,
) -> NdArrayTensor<E, 5> {
conv3d::<E, Q>(x, weight, bias, options)
}
fn conv_transpose3d(
x: NdArrayTensor<E, 5>,
weight: NdArrayTensor<E, 5>,
bias: Option<NdArrayTensor<E, 1>>,
options: ConvTransposeOptions<3>,
) -> NdArrayTensor<E, 5> {
conv_transpose3d(x, weight, bias, options)
}
}