use burn_tensor::{
ops::{FloatTensor, QTensorOps, QuantizedTensor},
quantization::{QuantizationParametersPrimitive, QuantizationScheme},
Device, Shape, TensorData,
};
use crate::{tensor::QJitTensor, FloatElement, IntElement, JitBackend, JitRuntime};
impl<R, F, I> QTensorOps<Self> for JitBackend<R, F, I>
where
R: JitRuntime,
F: FloatElement,
I: IntElement,
{
fn q_from_data<const D: usize>(
_data: TensorData,
_device: &Device<Self>,
) -> QuantizedTensor<Self, D> {
todo!()
}
fn quantize<const D: usize>(
_tensor: FloatTensor<Self, D>,
_scheme: &QuantizationScheme,
_qparams: QuantizationParametersPrimitive<Self>,
) -> QuantizedTensor<Self, D> {
unimplemented!()
}
fn dequantize<const D: usize>(_tensor: QuantizedTensor<Self, D>) -> FloatTensor<Self, D> {
unimplemented!()
}
fn q_shape<const D: usize>(tensor: &QuantizedTensor<Self, D>) -> Shape<D> {
tensor.qtensor.shape.clone()
}
fn q_device<const D: usize>(tensor: &QuantizedTensor<Self, D>) -> Device<Self> {
tensor.qtensor.device.clone()
}
fn q_reshape<const D1: usize, const D2: usize>(
tensor: QuantizedTensor<Self, D1>,
shape: Shape<D2>,
) -> QuantizedTensor<Self, D2> {
QJitTensor {
qtensor: super::reshape(tensor.qtensor, shape),
scheme: tensor.scheme,
}
}
async fn q_into_data<const D: usize>(_tensor: QuantizedTensor<Self, D>) -> TensorData {
unimplemented!()
}
}