burn_core/grad_clipping/
base.rs1use crate as burn;
2
3use crate::{config::Config, tensor::Tensor};
4use burn_tensor::backend::Backend;
5
6#[derive(Config)]
8pub enum GradientClippingConfig {
9 Value(f32),
11
12 Norm(f32),
14}
15
16impl GradientClippingConfig {
17 pub fn init(&self) -> GradientClipping {
23 match self {
24 GradientClippingConfig::Value(val) => GradientClipping::Value(*val),
25 GradientClippingConfig::Norm(val) => GradientClipping::Norm(*val),
26 }
27 }
28}
29
30#[derive(Clone)]
34pub enum GradientClipping {
35 Value(f32),
37
38 Norm(f32),
40}
41
42impl GradientClipping {
43 pub fn clip_gradient<B: Backend, const D: usize>(&self, grad: Tensor<B, D>) -> Tensor<B, D> {
53 match self {
54 GradientClipping::Value(threshold) => self.clip_by_value(grad, *threshold),
55 GradientClipping::Norm(max_norm) => self.clip_by_norm(grad, *max_norm),
56 }
57 }
58
59 fn clip_by_value<B: Backend, const D: usize>(
60 &self,
61 grad: Tensor<B, D>,
62 threshold: f32,
63 ) -> Tensor<B, D> {
64 let greater_mask = grad.clone().greater_elem(threshold);
65 let lower_mask = grad.clone().lower_elem(-threshold);
66
67 let clipped_grad = grad.mask_fill(greater_mask, threshold);
68
69 clipped_grad.mask_fill(lower_mask, -threshold)
70 }
71
72 fn clip_by_norm<B: Backend, const D: usize>(
73 &self,
74 grad: Tensor<B, D>,
75 threshold: f32,
76 ) -> Tensor<B, D> {
77 use burn_tensor::ElementConversion;
78
79 let norm = Self::l2_norm(grad.clone());
80 let norm_float = norm.into_scalar().elem::<f32>();
81
82 if norm_float > threshold {
83 let scale = threshold / norm_float;
84 grad.mul_scalar(scale)
85 } else {
86 grad
87 }
88 }
89
90 fn l2_norm<B: Backend, const D: usize>(tensor: Tensor<B, D>) -> Tensor<B, 1> {
91 let squared = tensor.powi_scalar(2);
92 let sum = squared.sum();
93 sum.sqrt()
94 }
95}
96
97#[cfg(test)]
98mod tests {
99 use super::*;
100 use crate::TestBackend;
101 use crate::tensor::Tensor;
102
103 #[test]
104 fn test_clip_by_value() {
105 let gradient: Tensor<TestBackend, 2> = Tensor::from_floats(
106 [
107 [0.6294, 0.0940, 0.8176, 0.8824, 0.5228, 0.4310],
108 [0.7152, 0.9559, 0.7893, 0.5684, 0.5939, 0.8883],
109 ],
110 &Default::default(),
111 );
112
113 let clipped_gradient = GradientClipping::Value(0.5).clip_gradient(gradient);
114 let clipped_gradient_data = clipped_gradient.into_data();
115
116 for value in clipped_gradient_data.iter::<f32>() {
117 assert!(value <= 0.5);
118 }
119 }
120
121 #[test]
122 fn test_clip_by_norm() {
123 let gradient: Tensor<TestBackend, 2> = Tensor::from_floats(
124 [
125 [0.6294, 0.0940, 0.8176, 0.8824, 0.5228, 0.4310],
126 [0.7152, 0.9559, 0.7893, 0.5684, 0.5939, 0.8883],
127 ],
128 &Default::default(),
129 );
130
131 let clipped_gradient = GradientClipping::Norm(2.2).clip_gradient(gradient);
132 let clipped_gradient_data = clipped_gradient.into_data();
133
134 for value in clipped_gradient_data.iter::<f32>() {
135 assert!(value <= 0.88);
136 }
137 }
138}