use crate as burn;
use crate::config::Config;
use crate::module::Module;
use crate::module::Param;
use crate::nn::Initializer;
use crate::tensor::backend::Backend;
use crate::tensor::Tensor;
use burn_tensor::module::conv2d;
use burn_tensor::ops::conv::calculate_conv_padding;
use burn_tensor::ops::ConvOptions;
use libm::sqrt;
#[derive(Config)]
pub struct Conv2dConfig {
pub channels: [usize; 2],
pub kernel_size: [usize; 2],
#[config(default = "[1, 1]")]
pub stride: [usize; 2],
#[config(default = "[1, 1]")]
pub dilation: [usize; 2],
#[config(default = "1")]
pub groups: usize,
#[config(default = "Conv2dPaddingConfig::Valid")]
pub padding: Conv2dPaddingConfig,
#[config(default = true)]
pub bias: bool,
#[config(default = "Initializer::UniformDefault")]
pub initializer: Initializer,
}
#[derive(Module, Config, Debug)]
pub enum Conv2dPaddingConfig {
Same,
Valid,
Explicit(usize, usize),
}
#[derive(Module, Debug)]
pub struct Conv2d<B: Backend> {
weight: Param<Tensor<B, 4>>,
bias: Option<Param<Tensor<B, 1>>>,
stride: [usize; 2],
kernel_size: [usize; 2],
dilation: [usize; 2],
groups: usize,
padding: Conv2dPaddingConfig,
}
impl Conv2dConfig {
pub fn init<B: Backend>(&self) -> Conv2d<B> {
let k = (self.channels[0] * self.kernel_size[0] * self.kernel_size[1]) as f64;
let k = sqrt(1.0 / k);
let initializer = if let Initializer::UniformDefault = self.initializer {
Initializer::Uniform(-k, k)
} else {
self.initializer.clone()
};
let weight = initializer.init([
self.channels[1],
self.channels[0],
self.kernel_size[0],
self.kernel_size[1],
]);
let bias = if self.bias {
Some(initializer.init([self.channels[1]]))
} else {
None
};
Conv2d {
weight: Param::from(weight),
bias: bias.map(Param::from),
stride: self.stride,
kernel_size: self.kernel_size,
dilation: self.dilation,
padding: self.padding.clone(),
groups: self.groups,
}
}
pub fn init_with<B: Backend>(&self, record: Conv2dRecord<B>) -> Conv2d<B> {
Conv2d {
weight: record.weight,
bias: record.bias,
stride: self.stride,
dilation: self.dilation,
kernel_size: self.kernel_size,
padding: self.padding.clone(),
groups: self.groups,
}
}
}
impl<B: Backend> Conv2d<B> {
pub fn forward(&self, input: Tensor<B, 4>) -> Tensor<B, 4> {
let [_batch_size, _channels_in, height_in, width_in] = input.dims();
let padding =
self.padding
.calculate_padding_2d(height_in, width_in, &self.kernel_size, &self.stride);
conv2d(
input,
self.weight.val(),
self.bias.as_ref().map(|bias| bias.val()),
ConvOptions::new(self.stride, padding, self.dilation, self.groups),
)
}
}
impl Conv2dPaddingConfig {
pub(crate) fn calculate_padding_2d(
&self,
height: usize,
width: usize,
kernel_size: &[usize; 2],
stride: &[usize; 2],
) -> [usize; 2] {
let same_padding = || {
let p1 = calculate_conv_padding(kernel_size[0], stride[0], height, height);
let p2 = calculate_conv_padding(kernel_size[1], stride[1], width, width);
[p1, p2]
};
match self {
Conv2dPaddingConfig::Same => same_padding(),
Conv2dPaddingConfig::Valid => [0, 0],
Conv2dPaddingConfig::Explicit(v1, v2) => [*v1, *v2],
}
}
}
#[cfg(test)]
mod tests {
use burn_tensor::Data;
use super::*;
use crate::TestBackend;
#[test]
fn initializer_default() {
TestBackend::seed(0);
let config = Conv2dConfig::new([5, 1], [5, 5]);
let k = (config.channels[0] * config.kernel_size[0] * config.kernel_size[1]) as f64;
let k = sqrt(1.0 / k) as f32;
let conv = config.init::<TestBackend>();
assert_eq!(config.initializer, Initializer::UniformDefault);
conv.weight.to_data().assert_in_range(-k, k);
}
#[test]
fn initializer_zeros() {
TestBackend::seed(0);
let config = Conv2dConfig::new([5, 2], [5, 5]).with_initializer(Initializer::Zeros);
let conv = config.init::<TestBackend>();
assert_eq!(config.initializer, Initializer::Zeros);
conv.weight
.to_data()
.assert_approx_eq(&Data::zeros(conv.weight.shape()), 3);
}
}