1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
use alloc::{format, vec::Vec};
use crate as burn;
use crate::config::Config;
use crate::module::Module;
use crate::module::Param;
use crate::tensor::{backend::Backend, Tensor};
use libm::sqrt;
use super::Initializer;
#[derive(Config)]
pub struct LinearConfig {
pub d_input: usize,
pub d_output: usize,
#[config(default = true)]
pub bias: bool,
#[config(default = "Initializer::UniformDefault")]
pub initializer: Initializer,
}
#[derive(Module, Debug)]
pub struct Linear<B: Backend> {
weight: Param<Tensor<B, 2>>,
bias: Param<Option<Tensor<B, 1>>>,
}
impl<B: Backend> Linear<B> {
pub fn new(config: &LinearConfig) -> Self {
let k = sqrt(1.0 / config.d_input as f64);
let initializer = if let Initializer::UniformDefault = config.initializer {
Initializer::Uniform(-k, k)
} else {
config.initializer.clone()
};
let weight = initializer.init([config.d_input, config.d_output]);
let bias = if config.bias {
Some(initializer.init([config.d_output]))
} else {
None
};
Self {
weight: Param::from(weight),
bias: Param::from(bias),
}
}
pub fn forward<const D: usize>(&self, input: Tensor<B, D>) -> Tensor<B, D> {
let output = input.matmul(self.weight.val().unsqueeze());
match self.bias.val() {
Some(bias) => output + bias.unsqueeze(),
None => output,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
pub type TB = burn_ndarray::NdArrayBackend<f32>;
#[test]
fn initializer_default() {
TB::seed(0);
let config = LinearConfig::new(5, 5);
let k = sqrt(1.0 / config.d_input as f64);
assert_eq!(config.initializer, Initializer::UniformDefault);
let conv: Linear<TB> = Linear::new(&config);
for item in conv.weight.to_data().value.iter() {
if *item < -k as f32 || *item > k as f32 {
panic!("Element ({item}) is not within the range of (-{k},{k})");
}
}
}
#[test]
fn initializer_zeros() {
TB::seed(0);
let config = LinearConfig::new(5, 5).with_initializer(Initializer::Zeros);
assert_eq!(config.initializer, Initializer::Zeros);
let conv: Linear<TB> = Linear::new(&config);
for item in conv.weight.to_data().value.iter() {
assert_eq!(*item, 0.0f32);
}
}
}