1use crate as burn;
2use crate::config::Config;
3use crate::module::Content;
4use crate::module::DisplaySettings;
5use crate::module::Module;
6use crate::module::ModuleDisplay;
7use crate::module::Param;
8use crate::nn::Initializer;
9use crate::tensor::Tensor;
10use crate::tensor::backend::Backend;
11
12#[derive(Debug, Config)]
14pub struct LayerNormConfig {
15 pub d_model: usize,
17 #[config(default = 1e-5)]
19 pub epsilon: f64,
20}
21
22#[derive(Module, Debug)]
34#[module(custom_display)]
35pub struct LayerNorm<B: Backend> {
36 pub gamma: Param<Tensor<B, 1>>,
38 pub beta: Param<Tensor<B, 1>>,
40 epsilon: f64,
42}
43
44impl LayerNormConfig {
45 pub fn init<B: Backend>(&self, device: &B::Device) -> LayerNorm<B> {
47 let gamma = Initializer::Ones.init([self.d_model], device);
48 let beta = Initializer::Zeros.init([self.d_model], device);
49
50 LayerNorm {
51 gamma,
52 beta,
53 epsilon: self.epsilon,
54 }
55 }
56}
57
58impl<B: Backend> LayerNorm<B> {
59 pub fn forward<const D: usize>(&self, input: Tensor<B, D>) -> Tensor<B, D> {
68 let (var, mean) = input.clone().var_mean_bias(D - 1);
69
70 let input_normalized = input.sub(mean).div(var.add_scalar(self.epsilon).sqrt());
71
72 input_normalized
73 .mul(self.gamma.val().unsqueeze())
74 .add(self.beta.val().unsqueeze())
75 }
76}
77
78impl<B: Backend> ModuleDisplay for LayerNorm<B> {
79 fn custom_settings(&self) -> Option<DisplaySettings> {
80 DisplaySettings::new()
81 .with_new_line_after_attribute(false)
82 .optional()
83 }
84
85 fn custom_content(&self, content: Content) -> Option<Content> {
86 let [d_model] = self.gamma.shape().dims();
87 content
88 .add("d_model", &d_model)
89 .add("epsilon", &self.epsilon)
90 .optional()
91 }
92}
93
94#[cfg(test)]
95mod tests {
96 use super::*;
97 use crate::tensor::TensorData;
98 use alloc::format;
99 use burn_tensor::{Tolerance, ops::FloatElem};
100 type FT = FloatElem<TestBackend>;
101
102 #[cfg(feature = "std")]
103 use crate::{TestAutodiffBackend, TestBackend};
104
105 #[cfg(not(feature = "std"))]
106 use crate::TestBackend;
107
108 #[test]
109 fn layer_norm_forward() {
110 let device = Default::default();
111 let module = LayerNormConfig::new(10).init::<TestBackend>(&device);
112 let input = Tensor::<TestBackend, 2>::from_data(
113 TensorData::from([[
114 -0.6897, -2.7106, 2.2222, -1.0330, -0.8933, 1.1765, 0.0601, 1.5252, -0.3630, 0.6728,
115 ]]),
116 &device,
117 );
118
119 let output = module.forward(input);
120
121 let expected = TensorData::from([[
122 -0.4990, -1.9680, 1.6178, -0.7486, -0.6470, 0.8576, 0.0461, 1.1111, -0.2614, 0.4915,
123 ]]);
124 output
125 .to_data()
126 .assert_approx_eq::<FT>(&expected, Tolerance::rel_abs(1e-4, 1e-4));
127 }
128
129 #[test]
130 fn layer_norm_forward_large_epsilon() {
131 let device = Default::default();
132 let module = LayerNormConfig::new(10)
133 .with_epsilon(1e-1)
134 .init::<TestBackend>(&device);
135 let input = Tensor::<TestBackend, 2>::from_data(
136 TensorData::from([[
137 -0.6897, -2.7106, 2.2222, -1.0330, -0.8933, 1.1765, 0.0601, 1.5252, -0.3630, 0.6728,
138 ]]),
139 &device,
140 );
141
142 let output = module.forward(input);
143
144 let expected = TensorData::from([[
145 -0.4863, -1.9180, 1.5766, -0.7295, -0.6305, 0.8358, 0.0449, 1.0828, -0.2548, 0.4790,
146 ]]);
147 output
148 .to_data()
149 .assert_approx_eq::<FT>(&expected, Tolerance::rel_abs(1e-4, 1e-4));
150 }
151
152 #[cfg(feature = "std")]
153 #[test]
154 fn layer_norm_backward() {
155 let device = Default::default();
156 let module = LayerNormConfig::new(2).init::<TestAutodiffBackend>(&device);
157 let tensor_1 = Tensor::<TestAutodiffBackend, 2>::from_data(
158 TensorData::from([[0.0, 1.0], [3.0, 4.0]]),
159 &device,
160 )
161 .require_grad();
162 let tensor_2 = Tensor::<TestAutodiffBackend, 2>::from_data(
163 TensorData::from([[6.0, 7.0], [9.0, 10.0]]),
164 &device,
165 )
166 .require_grad();
167
168 let x = tensor_1.clone().matmul(tensor_2.clone());
169
170 let output = module.forward(x);
171 let grads = output.backward();
172
173 let tensor_1_grad = tensor_1.grad(&grads).unwrap();
174 let tensor_2_grad = tensor_2.grad(&grads).unwrap();
175 let gamma_grad = module.gamma.grad(&grads).unwrap();
176 let beta_grad = module.beta.grad(&grads).unwrap();
177
178 let expected = TensorData::from([-2.0, 2.0]);
179 gamma_grad
180 .to_data()
181 .assert_approx_eq::<FT>(&expected, Tolerance::default());
182
183 let expected = TensorData::from([2.0, 2.0]);
184 beta_grad
185 .to_data()
186 .assert_approx_eq::<FT>(&expected, Tolerance::default());
187
188 let expected = TensorData::zeros::<f32, _>(tensor_1_grad.shape());
189 tensor_1_grad
190 .to_data()
191 .assert_approx_eq::<FT>(&expected, Tolerance::default());
192
193 let expected = TensorData::zeros::<f32, _>(tensor_2_grad.shape());
194 tensor_2_grad
195 .to_data()
196 .assert_approx_eq::<FT>(&expected, Tolerance::default());
197 }
198
199 #[test]
200 fn display() {
201 let config = LayerNormConfig::new(6);
202 let layer_norm = config.init::<TestBackend>(&Default::default());
203
204 assert_eq!(
205 format!("{}", layer_norm),
206 "LayerNorm {d_model: 6, epsilon: 0.00001, params: 12}"
207 );
208 }
209}