1use alloc::format;
2
3use crate as burn;
4
5use crate::config::Config;
6use crate::module::Content;
7use crate::module::DisplaySettings;
8use crate::module::Module;
9use crate::module::ModuleDisplay;
10use crate::module::Param;
11use crate::nn::Initializer;
12use crate::nn::conv::checks;
13use crate::tensor::Tensor;
14use crate::tensor::backend::Backend;
15use crate::tensor::module::conv_transpose3d;
16use crate::tensor::ops::ConvTransposeOptions;
17
18#[derive(Config, Debug)]
21pub struct ConvTranspose3dConfig {
22 pub channels: [usize; 2],
24 pub kernel_size: [usize; 3],
26 #[config(default = "[1, 1, 1]")]
28 pub stride: [usize; 3],
29 #[config(default = "[1, 1, 1]")]
31 pub dilation: [usize; 3],
32 #[config(default = "1")]
34 pub groups: usize,
35 #[config(default = "[0, 0, 0]")]
37 pub padding: [usize; 3],
38 #[config(default = "[0, 0, 0]")]
40 pub padding_out: [usize; 3],
41 #[config(default = true)]
43 pub bias: bool,
44 #[config(
46 default = "Initializer::KaimingUniform{gain:1.0/num_traits::Float::sqrt(3.0),fan_out_only:false}"
47 )]
48 pub initializer: Initializer,
49}
50
51#[derive(Module, Debug)]
53#[module(custom_display)]
54pub struct ConvTranspose3d<B: Backend> {
55 pub weight: Param<Tensor<B, 5>>,
57 pub bias: Option<Param<Tensor<B, 1>>>,
59 pub stride: [usize; 3],
61 pub kernel_size: [usize; 3],
63 pub dilation: [usize; 3],
65 pub groups: usize,
67 pub padding: [usize; 3],
69 pub padding_out: [usize; 3],
71 pub channels: [usize; 2],
73}
74
75impl<B: Backend> ModuleDisplay for ConvTranspose3d<B> {
76 fn custom_settings(&self) -> Option<DisplaySettings> {
77 DisplaySettings::new()
78 .with_new_line_after_attribute(false)
79 .optional()
80 }
81
82 fn custom_content(&self, content: Content) -> Option<Content> {
83 content
84 .add("channels", &format!("{:?}", &self.channels))
85 .add("stride", &format!("{:?}", &self.stride))
86 .add("kernel_size", &format!("{:?}", &self.kernel_size))
87 .add("dilation", &format!("{:?}", &self.dilation))
88 .add("groups", &self.groups)
89 .add("padding", &format!("{:?}", &self.padding))
90 .add("padding_out", &format!("{:?}", &self.padding_out))
91 .optional()
92 }
93}
94
95impl ConvTranspose3dConfig {
96 pub fn init<B: Backend>(&self, device: &B::Device) -> ConvTranspose3d<B> {
98 checks::checks_channels_div_groups(self.channels[0], self.channels[1], self.groups);
99
100 let shape = [
101 self.channels[0],
102 self.channels[1] / self.groups,
103 self.kernel_size[0],
104 self.kernel_size[1],
105 self.kernel_size[2],
106 ];
107
108 let fan_in = self.channels[1] / self.groups * self.kernel_size.iter().product::<usize>();
109 let weight = self
110 .initializer
111 .init_with(shape, Some(fan_in), None, device);
112 let mut bias = None;
113
114 if self.bias {
115 bias = Some(
116 self.initializer
117 .init_with([self.channels[1]], Some(fan_in), None, device),
118 );
119 }
120
121 ConvTranspose3d {
122 weight,
123 bias,
124 stride: self.stride,
125 kernel_size: self.kernel_size,
126 dilation: self.dilation,
127 groups: self.groups,
128 padding: self.padding,
129 padding_out: self.padding_out,
130 channels: self.channels,
131 }
132 }
133}
134
135impl<B: Backend> ConvTranspose3d<B> {
136 pub fn forward(&self, input: Tensor<B, 5>) -> Tensor<B, 5> {
145 conv_transpose3d(
146 input,
147 self.weight.val(),
148 self.bias.as_ref().map(|bias| bias.val()),
149 ConvTransposeOptions::new(
150 self.stride,
151 self.padding,
152 self.padding_out,
153 self.dilation,
154 self.groups,
155 ),
156 )
157 }
158}
159
160#[cfg(test)]
161mod tests {
162 use burn_tensor::Tolerance;
163
164 use super::*;
165 use crate::TestBackend;
166 use crate::tensor::TensorData;
167
168 #[test]
169 fn initializer_default() {
170 TestBackend::seed(0);
171
172 let config = ConvTranspose3dConfig::new([5, 1], [5, 5, 5]);
173 let k = (config.channels[1]
174 * config.kernel_size[0]
175 * config.kernel_size[1]
176 * config.kernel_size[2]) as f64;
177 let k = (config.groups as f64 / k).sqrt() as f32;
178 let conv = config.init::<TestBackend>(&Default::default());
179
180 conv.weight.to_data().assert_within_range(-k..k);
181 }
182
183 #[test]
184 fn initializer_zeros() {
185 TestBackend::seed(0);
186
187 let config =
188 ConvTranspose3dConfig::new([5, 2], [5, 5, 5]).with_initializer(Initializer::Zeros);
189 let conv = config.init::<TestBackend>(&Default::default());
190
191 assert_eq!(config.initializer, Initializer::Zeros);
192 conv.weight.to_data().assert_approx_eq::<f32>(
193 &TensorData::zeros::<f32, _>(conv.weight.shape()),
194 Tolerance::default(),
195 );
196 }
197
198 #[test]
199 fn display() {
200 let config = ConvTranspose3dConfig::new([5, 2], [5, 5, 5]);
201 let conv = config.init::<TestBackend>(&Default::default());
202
203 assert_eq!(
204 format!("{}", conv),
205 "ConvTranspose3d {channels: [5, 2], stride: [1, 1, 1], kernel_size: [5, 5, 5], dilation: [1, 1, 1], groups: 1, padding: [0, 0, 0], padding_out: [0, 0, 0], params: 1252}"
206 );
207 }
208
209 #[test]
210 #[should_panic = "Number of channels in input tensor and input channels of convolution must be equal. got: 4, expected: 5"]
211 fn input_channels_mismatch() {
212 let config = ConvTranspose3dConfig::new([5, 3], [3, 3, 3]);
213 let conv = config.init::<TestBackend>(&Default::default());
214
215 let input = Tensor::<TestBackend, 5>::zeros([1, 4, 10, 10, 10], &Default::default());
216 let _ = conv.forward(input);
217 }
218}