use crate as burn;
use crate::config::Config;
use crate::module::{Content, DisplaySettings, Module, ModuleDisplay};
use crate::tensor::activation::silu;
use crate::tensor::{backend::Backend, Tensor};
use super::{Initializer, Linear, LinearConfig};
#[derive(Config, Debug)]
pub struct SwiGluConfig {
pub d_input: usize,
pub d_output: usize,
#[config(default = false)]
pub bias: bool,
#[config(
default = "Initializer::KaimingUniform{gain:1.0/num_traits::Float::sqrt(3.0), fan_out_only:false}"
)]
pub initializer: Initializer,
}
#[derive(Module, Debug)]
#[module(custom_display)]
pub struct SwiGlu<B: Backend> {
pub linear_inner: Linear<B>,
pub linear_outer: Linear<B>,
}
impl<B: Backend> ModuleDisplay for SwiGlu<B> {
fn custom_settings(&self) -> Option<DisplaySettings> {
DisplaySettings::new()
.with_new_line_after_attribute(false)
.optional()
}
fn custom_content(&self, content: Content) -> Option<Content> {
let [d_input, d_output] = self.linear_inner.weight.shape().dims;
content
.add("d_input", &d_input)
.add("d_output", &d_output)
.add("bias", &self.linear_inner.bias.is_some())
.optional()
}
}
impl SwiGluConfig {
pub fn init<B: Backend>(&self, device: &B::Device) -> SwiGlu<B> {
SwiGlu {
linear_inner: LinearConfig::new(self.d_input, self.d_output)
.with_bias(self.bias)
.with_initializer(self.initializer.clone())
.init(device),
linear_outer: LinearConfig::new(self.d_input, self.d_output)
.with_bias(self.bias)
.with_initializer(self.initializer.clone())
.init(device),
}
}
}
impl<B: Backend> SwiGlu<B> {
pub fn forward<const D: usize>(&self, input: Tensor<B, D>) -> Tensor<B, D> {
let x = self.linear_inner.forward(input.clone());
let x = silu(x);
x.mul(self.linear_outer.forward(input))
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::TestBackend;
#[test]
fn test_swiglu_forward_no_bias() {
TestBackend::seed(0);
let device = Default::default();
let config = SwiGluConfig::new(3, 3).with_initializer(Initializer::Constant { value: 0.5 });
let swiglu = config.init(&device);
let input =
Tensor::<TestBackend, 2>::from_data([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], &device);
let output = swiglu.forward(input);
let expected_output = Tensor::<TestBackend, 2>::from_data(
[[8.5732, 8.5732, 8.5732], [56.2189, 56.2189, 56.2189]],
&device,
);
output
.to_data()
.assert_approx_eq(&expected_output.to_data(), 4);
}
#[test]
fn test_swiglu_forward_with_bias() {
TestBackend::seed(0);
let device = Default::default();
let config = SwiGluConfig::new(3, 3)
.with_bias(true)
.with_initializer(Initializer::Constant { value: 0.5 });
let swiglu = config.init(&device);
let input =
Tensor::<TestBackend, 2>::from_data([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], &device);
let output = swiglu.forward(input);
let expected_output = Tensor::<TestBackend, 2>::from_data(
[[11.8909, 11.8909, 11.8909], [63.9785, 63.9785, 63.9785]],
&device,
);
output
.to_data()
.assert_approx_eq(&expected_output.to_data(), 4);
}
#[test]
fn display() {
let config = SwiGluConfig::new(3, 5);
let swiglu = config.init::<TestBackend>(&Default::default());
assert_eq!(
alloc::format!("{}", swiglu),
"SwiGlu {d_input: 3, d_output: 5, bias: false, params: 30}"
);
}
}