1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
use crate as burn;
use crate::config::Config;
use crate::module::{Content, DisplaySettings, Module, ModuleDisplay};
use crate::tensor::backend::Backend;
use crate::tensor::Int;
use crate::tensor::Tensor;
use alloc::vec;
#[cfg(not(feature = "std"))]
use num_traits::Float;
/// Configuration to create a [RotaryEncoding](RotaryEncoding) layer using the [init function](RotaryEncodingConfig::init).
#[derive(Config, Debug)]
pub struct RotaryEncodingConfig {
/// Maximum sequence length of input
pub max_sequence_length: usize,
/// Size of the input embedding or hidden dimension
pub d_model: usize,
/// Scaling factor for frequency computation. Defaults to 10000.0
#[config(default = "10000.0")]
pub theta: f32,
}
impl RotaryEncodingConfig {
/// Initialize a new [RotaryEncoding](RotaryEncoding) module.
///
/// # Panics
///
/// Panics if the size of input embedding dimension is not even.
/// Panics if the theta parameter is not positive.
pub fn init<B: Backend>(&self, device: &B::Device) -> RotaryEncoding<B> {
self.initialize(None, device)
}
/// Initialize a new [RotaryEncoding](RotaryEncoding) module with a custom frequency scaling function.
/// This is useful to apply different RoPE extensions.
///
/// # Panics
///
/// Panics if the size of input embedding dimension is not even.
/// Panics if the theta parameter is not positive.
pub fn init_with_frequency_scaling<B: Backend>(
&self,
scaling: fn(Tensor<B, 1>) -> Tensor<B, 1>,
device: &B::Device,
) -> RotaryEncoding<B> {
self.initialize(Some(scaling), device)
}
/// Initialize a new [RotaryEncoding](RotaryEncoding) module.
///
/// # Panics
///
/// Panics if the size of input embedding dimension is not even.
/// Panics if the theta parameter is not positive.
fn initialize<B: Backend>(
&self,
scaling: Option<fn(Tensor<B, 1>) -> Tensor<B, 1>>,
device: &B::Device,
) -> RotaryEncoding<B> {
assert_eq!(
self.d_model % 2,
0,
"The input embedding dimension must be even"
);
assert!(
self.theta > 0.0,
"Theta parameter must be positive (default: 10000)."
);
// Calculate the rotation frequencies for positional embeddings based on the formula
// `theta_i = 1 / (theta ^ (2i / d_model)) for i in [0..d_model/2]`
let exponent = Tensor::<B, 1, Int>::arange_step(0..self.d_model as i64, 2, device)
.float()
.div_scalar(self.d_model as f32);
// Calculate (10000 ^ (2i / d_model)) by using the log base property `exp(log(10000) * (2i / d_model))`
// This is done since burn doesn't support exponentiation of scalar to tensor
let theta_i = exponent.mul_scalar(self.theta.ln()).exp();
let mut theta_i = theta_i.powf_scalar(-1.0);
if let Some(scaling) = scaling {
theta_i = scaling(theta_i)
}
// Generate frequency values for positional embeddings
let frequencies: Tensor<B, 2> =
Tensor::<B, 1, Int>::arange(0..self.max_sequence_length as i64, device)
.float()
.unsqueeze()
.transpose()
.repeat_dim(1, self.d_model / 2)
* theta_i.unsqueeze();
// Convert frequency values to complex numbers (polar form)
let p_cos = frequencies.clone().cos();
let p_sin = frequencies.sin();
// Create the frequency tensor of shape (max_sequence_length, d_model, 2) with the real(cos)
// and imaginary(sin) components along last dimension
let freq_complex: Tensor<B, 3> = Tensor::cat(vec![p_cos, p_sin], 1)
.reshape([self.max_sequence_length, 2, self.d_model / 2])
.transpose()
.unsqueeze_dim::<4>(2)
.repeat_dim(2, 2)
.reshape([self.max_sequence_length, self.d_model, 2]);
RotaryEncoding {
freq_complex,
max_sequence_length: self.max_sequence_length,
theta: self.theta,
}
}
}
/// A module that applies rotary positional encoding to a tensor.
/// Rotary Position Encoding or Embedding (RoPE), is a type of position embedding which encodes
/// absolute positional information with rotation matrix and naturally incorporates
/// explicit relative position dependency in self-attention formulation.
///
/// Introduced in the paper: [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864)
///
/// Should be created using [RotaryEncodingConfig].
#[derive(Module, Debug)]
#[module(custom_display)]
pub struct RotaryEncoding<B: Backend> {
/// Frequency Tensor of shape (max_sequence_length, d_model, 2) with real and imaginary components
pub freq_complex: Tensor<B, 3>,
/// Maximum sequence length of input
pub max_sequence_length: usize,
/// Scaling factor for frequency computation.
pub theta: f32,
}
impl<B: Backend> ModuleDisplay for RotaryEncoding<B> {
fn custom_settings(&self) -> Option<DisplaySettings> {
DisplaySettings::new()
.with_new_line_after_attribute(false)
.optional()
}
fn custom_content(&self, content: Content) -> Option<Content> {
let [_, _, d_model] = self.freq_complex.shape().dims;
content
.add("d_model", &d_model)
.add("max_sequence_length", &self.max_sequence_length)
.add("theta", &self.theta)
.optional()
}
}
#[allow(clippy::single_range_in_vec_init)]
impl<B: Backend> RotaryEncoding<B> {
/// Applies rotary positional encoding to a tensor of dimensions (..., seq_len, d_model)
///
/// Arguments:
/// * `x` - Input tensor of shape (..., seq_len, d_model). Accommodate both 3D and 4D tensors
/// for (batch size, seq_len, hidden_dim) or (batch size, num_heads, seq_len, hidden_dim)
/// respectively.
///
/// Returns:
/// * Output tensor with the same shape as input tensor after applying rotary encoding.
///
/// Panics if the input tensor does not have at least 2 dimensions for sequence length and hidden dimension.
pub fn forward<const D: usize>(&self, x: Tensor<B, D>) -> Tensor<B, D> {
self.apply(x, 0)
}
/// Applies rotary positional encoding to a tensor of dimensions (..., seq_len, d_model)
///
/// Arguments:
/// * `x` - Input tensor of shape (..., seq_len, d_model). Accommodate both 3D and 4D tensors
/// for (batch size, seq_len, hidden_dim) or (batch size, num_heads, seq_len, hidden_dim)
/// respectively.
/// * `start` - Sequence start position index.
///
/// Returns:
/// * Output tensor with the same shape as input tensor after applying rotary encoding.
///
/// Panics if the input tensor does not have at least 2 dimensions for sequence length and hidden dimension.
pub fn apply<const D: usize>(&self, x: Tensor<B, D>, start: usize) -> Tensor<B, D> {
assert!(
D >= 2,
"Input tensor must have at least 2 dimensions for sequence length and hidden dimension"
);
let device = x.device();
let input_shape = x.shape();
// Extract the sequence length and embedding dimension, other dimensions are kept generic
// to allow both 3D and 4D tensors i.e. batch_size or (batch_size, num_heads)
let (seq_len, d_model) = (x.dims()[D - 2], x.dims()[D - 1]);
let dummy_dim_size = input_shape.num_elements() / (seq_len * d_model);
// Create a dummy tensor with signed ones based on the 2D rotation matrix
// [[cos, -sin], [sin, cos]]
let sign_tensor =
Tensor::<B, 2>::from_floats([[1.0, 0.0, 0.0, 1.0], [0.0, -1.0, 1.0, 0.0]], &device);
// Rotate input using the frequency tensor. Slice the frequencies till input sequence length
let out: Tensor<B, 4> = x
.reshape([dummy_dim_size, seq_len, d_model / 2, 2])
.matmul(sign_tensor.unsqueeze())
.reshape([dummy_dim_size, seq_len, d_model, 2])
* self
.freq_complex
.clone()
.slice([start..start + seq_len])
.unsqueeze();
// Sum the real and imaginary components to get output tensor and reshape to original shape
out.sum_dim(D - 1).reshape(input_shape)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::TestBackend;
#[test]
fn test_rotary_encoding_forward() {
let device = Default::default();
let rotary_encoding = RotaryEncodingConfig::new(10, 4).init::<TestBackend>(&device);
let input = Tensor::<TestBackend, 3>::from_floats(
[
[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0]],
[[9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]],
],
&device,
);
// Input = [Batch size, Num of heads, Seq_len, d_model]
let input = input.unsqueeze::<4>();
let output = rotary_encoding.forward(input);
let expected_output = Tensor::<TestBackend, 3>::from_floats(
[
[
[1.0000, 2.0000, 3.0000, 4.0000],
[-2.3473, 7.4492, 6.9197, 8.0696],
],
[
[9.0000, 10.0000, 11.0000, 12.0000],
[-4.7567, 18.5034, 14.8393, 16.1492],
],
],
&device,
);
output
.squeeze::<3>(0)
.to_data()
.assert_approx_eq(&expected_output.to_data(), 4);
}
#[test]
fn test_zero_input_rotary_encoding_forward() {
let device = Default::default();
let rotary_encoding = RotaryEncodingConfig::new(10, 4).init::<TestBackend>(&device);
// Use a tensor of exact zeros as input. The output rotary embedding should be zeros as well
let input = Tensor::zeros([1, 2, 2, 4], &device);
let output = rotary_encoding.forward(input);
let expected_output = Tensor::<TestBackend, 3>::from_floats(
[
[
[0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000],
],
[
[0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000],
],
],
&device,
);
output
.squeeze::<3>(0)
.to_data()
.assert_approx_eq(&expected_output.to_data(), 4);
}
#[test]
#[should_panic]
fn test_valid_input_hidden_dim() {
// Hidden dimension must be even to be able to split into real and imaginary components
// for rotation
let d_model = 15;
let device = Default::default();
let pe = RotaryEncodingConfig::new(10, d_model).init::<TestBackend>(&device);
let input = Tensor::zeros([1, 5, d_model], &device);
let _output = pe.forward(input);
}
#[test]
fn test_rotary_encoding_frequencies() {
let device = Default::default();
let rotary_encoding = RotaryEncodingConfig::new(2, 8).init::<TestBackend>(&device);
let expected_freqs = Tensor::<TestBackend, 3>::from_floats(
[
[
[1.0000, 0.0000],
[1.0000, 0.0000],
[1.0000, 0.0000],
[1.0000, 0.0000],
],
[
[5.4030e-01, 8.4147e-01],
[9.9500e-01, 9.9833e-02],
[9.9995e-01, 9.9998e-03],
[9.9999e-01, 9.9999e-04],
],
],
&device,
)
.unsqueeze_dim::<4>(2)
.repeat_dim(2, 2)
.reshape([2, 8, 2]);
rotary_encoding
.freq_complex
.to_data()
.assert_approx_eq(&expected_freqs.to_data(), 4);
}
fn apply_freq_scaling_by_parts<B: Backend>(freqs: Tensor<B, 1>) -> Tensor<B, 1> {
// Adapted from: https://github.com/meta-llama/llama-models/blob/main/models/llama3/reference_impl/model.py#L45
let scale_factor = 8.;
let low_freq_factor = 1.;
let high_freq_factor = 4.;
let old_context_len = 8192.;
let low_freq_wavelen = old_context_len / low_freq_factor;
let high_freq_wavelen = old_context_len / high_freq_factor;
let wavelen = freqs.clone().recip().mul_scalar(2. * core::f32::consts::PI);
// if wavelen >= high_freq_wavelen
let cond = wavelen.clone().greater_equal_elem(high_freq_wavelen);
let smooth = wavelen
.clone()
.recip()
.mul_scalar(old_context_len)
.sub_scalar(low_freq_factor)
.div_scalar(high_freq_factor - low_freq_factor);
// (1 - smooth) * freq / scale_factor + smooth * freq
let new_freqs = smooth
.clone()
.neg()
.add_scalar(1.)
.mul(freqs.clone().div_scalar(scale_factor))
.add(smooth.clone().mul(freqs.clone()));
let new_freqs = freqs.clone().mask_where(cond, new_freqs);
// if wavelen > low_freq_wavelen
let cond = wavelen.clone().greater_elem(low_freq_wavelen);
let new_freqs = new_freqs.mask_where(cond, freqs.clone().div_scalar(scale_factor));
// if wavelen < high_freq_wavelen
let cond = wavelen.lower_elem(high_freq_wavelen);
new_freqs.mask_where(cond, freqs)
}
#[test]
fn test_rotary_encoding_with_frequency_scaling() {
let device = Default::default();
let rotary_encoding = RotaryEncodingConfig::new(2, 8)
.init_with_frequency_scaling::<TestBackend>(apply_freq_scaling_by_parts, &device);
let expected_freqs = Tensor::<TestBackend, 3>::from_floats(
[
[
[1.0000, 0.0000],
[1.0000, 0.0000],
[1.0000, 0.0000],
[1.0000, 0.0000],
],
[
[5.4030e-01, 8.4148e-01],
[9.9500e-01, 9.9833e-02],
[9.9995e-01, 9.9998e-03],
[1.0000, 2.1361e-04],
],
],
&device,
)
.unsqueeze_dim::<4>(2)
.repeat_dim(2, 2)
.reshape([2, 8, 2]);
rotary_encoding
.freq_complex
.to_data()
.assert_approx_eq(&expected_freqs.to_data(), 4);
}
#[test]
fn display() {
let config = RotaryEncodingConfig::new(10, 4);
let pe = config.init::<TestBackend>(&Default::default());
assert_eq!(
alloc::format!("{}", pe),
"RotaryEncoding {d_model: 2, max_sequence_length: 10, theta: 10000}"
);
}
}