1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
use crate as burn;

use crate::config::Config;
use crate::module::Module;
use crate::module::{Content, DisplaySettings, ModuleDisplay};
use crate::nn::rnn::gate_controller;
use crate::nn::Initializer;
use crate::tensor::activation;
use crate::tensor::backend::Backend;
use crate::tensor::Tensor;

use super::gate_controller::GateController;

/// Configuration to create a [gru](Gru) module using the [init function](GruConfig::init).
#[derive(Config)]
pub struct GruConfig {
    /// The size of the input features.
    pub d_input: usize,
    /// The size of the hidden state.
    pub d_hidden: usize,
    /// If a bias should be applied during the Gru transformation.
    pub bias: bool,
    /// Gru initializer
    #[config(default = "Initializer::XavierNormal{gain:1.0}")]
    pub initializer: Initializer,
}

/// The Gru (Gated recurrent unit) module. This implementation is for a unidirectional, stateless, Gru.
///
/// Introduced in the paper: [Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation](https://arxiv.org/abs/1406.1078).
///
/// Should be created with [GruConfig].
#[derive(Module, Debug)]
#[module(custom_display)]
pub struct Gru<B: Backend> {
    /// The update gate controller.
    pub update_gate: GateController<B>,
    /// The reset gate controller.
    pub reset_gate: GateController<B>,
    /// The new gate controller.
    pub new_gate: GateController<B>,
    /// The size of the hidden state.
    pub d_hidden: usize,
}

impl<B: Backend> ModuleDisplay for Gru<B> {
    fn custom_settings(&self) -> Option<DisplaySettings> {
        DisplaySettings::new()
            .with_new_line_after_attribute(false)
            .optional()
    }

    fn custom_content(&self, content: Content) -> Option<Content> {
        let [d_input, _] = self.update_gate.input_transform.weight.shape().dims;
        let bias = self.update_gate.input_transform.bias.is_some();

        content
            .add("d_input", &d_input)
            .add("d_hidden", &self.d_hidden)
            .add("bias", &bias)
            .optional()
    }
}

impl GruConfig {
    /// Initialize a new [gru](Gru) module.
    pub fn init<B: Backend>(&self, device: &B::Device) -> Gru<B> {
        let d_output = self.d_hidden;

        let update_gate = gate_controller::GateController::new(
            self.d_input,
            d_output,
            self.bias,
            self.initializer.clone(),
            device,
        );
        let reset_gate = gate_controller::GateController::new(
            self.d_input,
            d_output,
            self.bias,
            self.initializer.clone(),
            device,
        );
        let new_gate = gate_controller::GateController::new(
            self.d_input,
            d_output,
            self.bias,
            self.initializer.clone(),
            device,
        );

        Gru {
            update_gate,
            reset_gate,
            new_gate,
            d_hidden: self.d_hidden,
        }
    }
}

impl<B: Backend> Gru<B> {
    /// Applies the forward pass on the input tensor. This GRU implementation
    /// returns a single state tensor with dimensions [batch_size, sequence_length, hidden_size].
    ///
    /// # Shapes
    /// - batched_input: `[batch_size, sequence_length, input_size]`.
    /// - state: An optional tensor representing an initial cell state with the same dimensions
    ///          as batched_input. If none is provided, one will be generated.
    /// - output: `[batch_size, sequence_length, hidden_size]`.
    pub fn forward(
        &self,
        batched_input: Tensor<B, 3>,
        state: Option<Tensor<B, 3>>,
    ) -> Tensor<B, 3> {
        let [batch_size, seq_length, _] = batched_input.shape().dims;

        let mut hidden_state = match state {
            Some(state) => state,
            None => Tensor::zeros(
                [batch_size, seq_length, self.d_hidden],
                &batched_input.device(),
            ),
        };

        for (t, (input_t, hidden_t)) in batched_input
            .iter_dim(1)
            .zip(hidden_state.clone().iter_dim(1))
            .enumerate()
        {
            let input_t = input_t.squeeze(1);
            let hidden_t = hidden_t.squeeze(1);
            // u(pdate)g(ate) tensors
            let biased_ug_input_sum = self.gate_product(&input_t, &hidden_t, &self.update_gate);
            let update_values = activation::sigmoid(biased_ug_input_sum); // Colloquially referred to as z(t)

            // r(eset)g(ate) tensors
            let biased_rg_input_sum = self.gate_product(&input_t, &hidden_t, &self.reset_gate);
            let reset_values = activation::sigmoid(biased_rg_input_sum); // Colloquially referred to as r(t)
            let reset_t = hidden_t.clone().mul(reset_values); // Passed as input to new_gate

            // n(ew)g(ate) tensor
            let biased_ng_input_sum = self.gate_product(&input_t, &reset_t, &self.new_gate);
            let candidate_state = biased_ng_input_sum.tanh(); // Colloquially referred to as g(t)

            // calculate linear interpolation between previous hidden state and candidate state:
            // g(t) * (1 - z(t)) + z(t) * hidden_t
            let state_vector = candidate_state
                .clone()
                .mul(update_values.clone().sub_scalar(1).mul_scalar(-1)) // (1 - z(t)) = -(z(t) - 1)
                + update_values.clone().mul(hidden_t);

            let current_shape = state_vector.shape().dims;
            let unsqueezed_shape = [current_shape[0], 1, current_shape[1]];
            let reshaped_state_vector = state_vector.reshape(unsqueezed_shape);
            hidden_state = hidden_state.slice_assign(
                [0..batch_size, t..(t + 1), 0..self.d_hidden],
                reshaped_state_vector,
            );
        }

        hidden_state
    }

    /// Helper function for performing weighted matrix product for a gate and adds
    /// bias, if any.
    ///
    ///  Mathematically, performs `Wx*X + Wh*H + b`, where:
    ///     Wx = weight matrix for the connection to input vector X
    ///     Wh = weight matrix for the connection to hidden state H
    ///     X = input vector
    ///     H = hidden state
    ///     b = bias terms
    fn gate_product(
        &self,
        input: &Tensor<B, 2>,
        hidden: &Tensor<B, 2>,
        gate: &GateController<B>,
    ) -> Tensor<B, 2> {
        let input_product = input.clone().matmul(gate.input_transform.weight.val());
        let hidden_product = hidden.clone().matmul(gate.hidden_transform.weight.val());

        let input_bias = gate
            .input_transform
            .bias
            .as_ref()
            .map(|bias_param| bias_param.val());
        let hidden_bias = gate
            .hidden_transform
            .bias
            .as_ref()
            .map(|bias_param| bias_param.val());

        match (input_bias, hidden_bias) {
            (Some(input_bias), Some(hidden_bias)) => {
                input_product + input_bias.unsqueeze() + hidden_product + hidden_bias.unsqueeze()
            }
            (Some(input_bias), None) => input_product + input_bias.unsqueeze() + hidden_product,
            (None, Some(hidden_bias)) => input_product + hidden_product + hidden_bias.unsqueeze(),
            (None, None) => input_product + hidden_product,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::tensor::{Distribution, TensorData};
    use crate::{module::Param, nn::LinearRecord, TestBackend};

    /// Test forward pass with simple input vector.
    ///
    /// z_t = sigmoid(0.5*0.1 + 0.5*0) = 0.5125
    /// r_t = sigmoid(0.6*0.1 + 0.*0) = 0.5150
    /// g_t = tanh(0.7*0.1 + 0.7*0) = 0.0699
    ///
    /// h_t = z_t * h' + (1 - z_t) * g_t = 0.0341
    #[test]
    fn tests_forward_single_input_single_feature() {
        TestBackend::seed(0);
        let config = GruConfig::new(1, 1, false);
        let device = Default::default();
        let mut gru = config.init::<TestBackend>(&device);

        fn create_gate_controller(
            weights: f32,
            biases: f32,
            d_input: usize,
            d_output: usize,
            bias: bool,
            initializer: Initializer,
            device: &<TestBackend as Backend>::Device,
        ) -> GateController<TestBackend> {
            let record_1 = LinearRecord {
                weight: Param::from_data(TensorData::from([[weights]]), device),
                bias: Some(Param::from_data(TensorData::from([biases]), device)),
            };
            let record_2 = LinearRecord {
                weight: Param::from_data(TensorData::from([[weights]]), device),
                bias: Some(Param::from_data(TensorData::from([biases]), device)),
            };
            gate_controller::GateController::create_with_weights(
                d_input,
                d_output,
                bias,
                initializer,
                record_1,
                record_2,
            )
        }

        gru.update_gate = create_gate_controller(
            0.5,
            0.0,
            1,
            1,
            false,
            Initializer::XavierNormal { gain: 1.0 },
            &device,
        );
        gru.reset_gate = create_gate_controller(
            0.6,
            0.0,
            1,
            1,
            false,
            Initializer::XavierNormal { gain: 1.0 },
            &device,
        );
        gru.new_gate = create_gate_controller(
            0.7,
            0.0,
            1,
            1,
            false,
            Initializer::XavierNormal { gain: 1.0 },
            &device,
        );

        let input = Tensor::<TestBackend, 3>::from_data(TensorData::from([[[0.1]]]), &device);

        let state = gru.forward(input, None);

        let output = state
            .select(0, Tensor::arange(0..1, &device))
            .squeeze::<2>(0);

        let expected = TensorData::from([[0.034]]);
        output.to_data().assert_approx_eq(&expected, 3);
    }

    #[test]
    fn test_batched_forward_pass() {
        let device = Default::default();
        let gru = GruConfig::new(64, 1024, true).init::<TestBackend>(&device);
        let batched_input =
            Tensor::<TestBackend, 3>::random([8, 10, 64], Distribution::Default, &device);

        let hidden_state = gru.forward(batched_input, None);

        assert_eq!(hidden_state.shape().dims, [8, 10, 1024]);
    }

    #[test]
    fn display() {
        let config = GruConfig::new(2, 8, true);

        let layer = config.init::<TestBackend>(&Default::default());

        assert_eq!(
            alloc::format!("{}", layer),
            "Gru {d_input: 2, d_hidden: 8, bias: true, params: 288}"
        );
    }
}