1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
use crate as burn;
use crate::config::Config;
use crate::module::{Content, DisplaySettings, ModuleDisplay};
use crate::module::{Ignored, Module};
use crate::nn::PaddingConfig2d;
use crate::tensor::backend::Backend;
use crate::tensor::Tensor;
use crate::tensor::module::avg_pool2d;
/// Configuration to create a [2D avg pooling](AvgPool2d) layer using the [init function](AvgPool2dConfig::init).
#[derive(Config, Debug)]
pub struct AvgPool2dConfig {
/// The size of the kernel.
pub kernel_size: [usize; 2],
/// The strides.
#[config(default = "[1, 1]")]
pub strides: [usize; 2],
/// The padding configuration.
#[config(default = "PaddingConfig2d::Valid")]
pub padding: PaddingConfig2d,
/// If the padding is counted in the denominator when computing the average.
#[config(default = "true")]
pub count_include_pad: bool,
}
/// Applies a 2D avg pooling over input tensors.
///
/// Should be created with [AvgPool2dConfig](AvgPool2dConfig).
///
/// # Remarks
///
/// The zero-padding values will be included in the calculation
/// of the average. This means that the zeros are counted as
/// legitimate values, and they contribute to the denominator
/// when calculating the average. This is equivalent to
/// `torch.nn.AvgPool2d` with `count_include_pad=True`.
///
/// TODO: Add support for `count_include_pad=False`, see
/// [Issue 636](https://github.com/tracel-ai/burn/issues/636)
#[derive(Module, Clone, Debug)]
#[module(custom_display)]
pub struct AvgPool2d {
/// Stride of the pooling.
pub stride: [usize; 2],
/// Size of the kernel.
pub kernel_size: [usize; 2],
/// Padding configuration.
pub padding: Ignored<PaddingConfig2d>,
/// If the padding is counted in the denominator when computing the average.
pub count_include_pad: bool,
}
impl ModuleDisplay for AvgPool2d {
fn custom_settings(&self) -> Option<DisplaySettings> {
DisplaySettings::new()
.with_new_line_after_attribute(false)
.optional()
}
fn custom_content(&self, content: Content) -> Option<Content> {
content
.add("kernel_size", &alloc::format!("{:?}", &self.kernel_size))
.add("stride", &alloc::format!("{:?}", &self.stride))
.add("padding", &self.padding)
.add("count_include_pad", &self.count_include_pad)
.optional()
}
}
impl AvgPool2dConfig {
/// Initialize a new [avg pool 2d](AvgPool2d) module.
pub fn init(&self) -> AvgPool2d {
AvgPool2d {
stride: self.strides,
kernel_size: self.kernel_size,
padding: Ignored(self.padding.clone()),
count_include_pad: self.count_include_pad,
}
}
}
impl AvgPool2d {
/// Applies the forward pass on the input tensor.
///
/// See [avg_pool2d](crate::tensor::module::avg_pool2d) for more information.
///
/// # Shapes
///
/// - input: `[batch_size, channels, height_in, width_in]`
/// - output: `[batch_size, channels, height_out, width_out]`
pub fn forward<B: Backend>(&self, input: Tensor<B, 4>) -> Tensor<B, 4> {
let [_batch_size, _channels_in, height_in, width_in] = input.dims();
let padding =
self.padding
.calculate_padding_2d(height_in, width_in, &self.kernel_size, &self.stride);
avg_pool2d(
input,
self.kernel_size,
self.stride,
padding,
self.count_include_pad,
)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn display() {
let config = AvgPool2dConfig::new([3, 3]);
let layer = config.init();
assert_eq!(
alloc::format!("{}", layer),
"AvgPool2d {kernel_size: [3, 3], stride: [1, 1], padding: Valid, count_include_pad: true}"
);
}
}