use crate as burn;
use crate::config::Config;
use crate::module::Module;
use crate::module::Param;
use crate::module::{Content, DisplaySettings, ModuleDisplay};
use crate::nn::Initializer;
use crate::tensor::backend::Backend;
use crate::tensor::Tensor;
#[derive(Config)]
pub struct RmsNormConfig {
pub d_model: usize,
#[config(default = 1e-5)]
pub epsilon: f64,
}
impl RmsNormConfig {
pub fn init<B: Backend>(&self, device: &B::Device) -> RmsNorm<B> {
assert!(self.epsilon > 0.0, "epsilon must be positive.");
let gamma = Initializer::Ones.init([self.d_model], device);
RmsNorm {
gamma,
epsilon: self.epsilon,
}
}
}
#[derive(Module, Debug)]
#[module(custom_display)]
pub struct RmsNorm<B: Backend> {
pub gamma: Param<Tensor<B, 1>>,
pub epsilon: f64,
}
impl<B: Backend> RmsNorm<B> {
pub fn forward<const D: usize>(&self, x: Tensor<B, D>) -> Tensor<B, D> {
let rms = (x
.clone()
.into_full_precision()
.powf_scalar(2.0)
.mean_dim(D - 1)
+ self.epsilon)
.sqrt();
(x / Tensor::from_full_precision(rms)) * self.gamma.val().unsqueeze()
}
}
impl<B: Backend> ModuleDisplay for RmsNorm<B> {
fn custom_settings(&self) -> Option<DisplaySettings> {
DisplaySettings::new()
.with_new_line_after_attribute(false)
.optional()
}
fn custom_content(&self, content: Content) -> Option<Content> {
let [d_model] = self.gamma.shape().dims;
content
.add("d_model", &d_model)
.add("epsilon", &self.epsilon)
.optional()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::tensor::TensorData;
use crate::TestBackend;
use alloc::format;
#[test]
fn rms_norm_forward() {
let device = Default::default();
let module = RmsNormConfig::new(3)
.with_epsilon(1e-5)
.init::<TestBackend>(&device);
let input = Tensor::arange(0..9, &device).float().reshape([3, 3]);
let output = module.forward(input);
let expected = TensorData::from([
[0.0000, 0.7746, 1.5492],
[0.7348, 0.9798, 1.2247],
[0.8514, 0.9933, 1.1352],
]);
output.to_data().assert_approx_eq(&expected, 4);
}
#[test]
fn display() {
let config = RmsNormConfig::new(6);
let layer_norm = config.init::<TestBackend>(&Default::default());
assert_eq!(
format!("{}", layer_norm),
"RmsNorm {d_model: 6, epsilon: 0.00001, params: 6}"
);
}
}