1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
use crate as burn;

use crate::config::Config;
use crate::module::{Content, DisplaySettings, ModuleDisplay};
use crate::module::{Module, Param};
use crate::nn::norm::group_norm;
use crate::nn::Initializer;
use crate::tensor::{backend::Backend, Tensor};

/// Configuration to create a [InstanceNorm](InstanceNorm) layer using the [init function](InstanceNormConfig::init).
#[derive(Debug, Config)]
pub struct InstanceNormConfig {
    /// The number of channels expected in the input
    pub num_channels: usize,
    /// A value required for numerical stability. Default: 1e-5
    #[config(default = 1e-5)]
    pub epsilon: f64,
    /// A boolean value that when set to `true`, this module has learnable
    /// per-channel affine parameters initialized to ones (for weights)
    /// and zeros (for biases). Default: `true`
    #[config(default = true)]
    pub affine: bool,
}

/// Applies Instance Normalization over a tensor as described in the paper [Instance Normalization](https://arxiv.org/abs/1607.08022)
///
/// Should be created using [InstanceNormConfig](InstanceNormConfig).
#[derive(Module, Debug)]
#[module(custom_display)]
pub struct InstanceNorm<B: Backend> {
    /// The learnable weight
    pub gamma: Option<Param<Tensor<B, 1>>>,
    /// The learnable bias
    pub beta: Option<Param<Tensor<B, 1>>>,
    /// The number of channels expected in the input
    pub num_channels: usize,
    /// A value required for numerical stability
    pub epsilon: f64,
    /// A boolean value that when set to `true`, this module has learnable
    pub affine: bool,
}

impl<B: Backend> ModuleDisplay for InstanceNorm<B> {
    fn custom_settings(&self) -> Option<DisplaySettings> {
        DisplaySettings::new()
            .with_new_line_after_attribute(false)
            .optional()
    }

    fn custom_content(&self, content: Content) -> Option<Content> {
        content
            .add("num_channels", &self.num_channels)
            .add("epsilon", &self.epsilon)
            .add("affine", &self.affine)
            .optional()
    }
}

impl InstanceNormConfig {
    /// Initialize a new [instance norm](InstanceNorm) module.
    pub fn init<B: Backend>(&self, device: &B::Device) -> InstanceNorm<B> {
        let (gamma, beta) = if self.affine {
            let gamma = Initializer::Ones.init([self.num_channels], device);
            let beta = Initializer::Zeros.init([self.num_channels], device);

            (Some(gamma), Some(beta))
        } else {
            (None, None)
        };

        InstanceNorm {
            gamma,
            beta,
            num_channels: self.num_channels,
            epsilon: self.epsilon,
            affine: self.affine,
        }
    }
}

impl<B: Backend> InstanceNorm<B> {
    /// Applies the forward pass on the input tensor.
    ///
    /// See also [InstanceNormConfig](InstanceNormConfig) for more information.
    ///
    /// # Shapes
    ///
    /// - input: `[batch_size, num_channels, *]`
    /// - output: `[batch_size, num_channels, *]`
    pub fn forward<const D: usize>(&self, input: Tensor<B, D>) -> Tensor<B, D> {
        // Instance norm is equivalent to group norm when the number of groups is equal to the number of channels.
        let num_groups = self.num_channels;

        let gamma = self.gamma.as_ref().map(|x| x.val());
        let beta = self.beta.as_ref().map(|x| x.val());

        group_norm(input, gamma, beta, num_groups, self.epsilon, self.affine)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::tensor::TensorData;
    use crate::TestBackend;
    use alloc::format;

    #[test]
    fn instance_norm_forward_affine_false() {
        let device = Default::default();
        let module = InstanceNormConfig::new(6)
            .with_affine(false)
            .init::<TestBackend>(&device);

        let input = Tensor::<TestBackend, 3>::from_data(
            TensorData::from([
                [
                    [-0.3034, 0.2726, -0.9659],
                    [-1.1845, 1.4078, 0.9774],
                    [0.3963, -1.3738, 1.4125],
                    [1.0682, 0.3604, 0.3985],
                    [-0.4957, -0.4461, -0.9721],
                    [1.5157, -0.1546, -0.5596],
                ],
                [
                    [-1.6698, -0.4040, -0.7927],
                    [0.3736, -0.0975, -0.1351],
                    [-0.9461, 0.5461, -0.6334],
                    [-1.0919, -0.1158, 0.1213],
                    [-0.9535, 0.1281, 0.4372],
                    [-0.2845, 0.3488, 0.5641],
                ],
            ]),
            &device,
        );

        let output = module.forward(input);

        let expected = TensorData::from([
            [
                [0.0569, 1.1952, -1.2522],
                [-1.3971, 0.8883, 0.5088],
                [0.2183, -1.3192, 1.1009],
                [1.4126, -0.7649, -0.6477],
                [0.5999, 0.8091, -1.409],
                [1.39, -0.4696, -0.9205],
            ],
            [
                [-1.3492, 1.0417, 0.3075],
                [1.411, -0.6243, -0.7867],
                [-0.9363, 1.386, -0.4497],
                [-1.3899, 0.4692, 0.9208],
                [-1.3822, 0.4319, 0.9503],
                [-1.3714, 0.3868, 0.9846],
            ],
        ]);
        output.to_data().assert_approx_eq(&expected, 3);
    }

    #[test]
    fn instance_norm_forward_affine_true() {
        let device = Default::default();
        let module = InstanceNormConfig::new(6)
            .with_affine(true)
            .init::<TestBackend>(&device);

        let input = Tensor::<TestBackend, 3>::from_data(
            TensorData::from([
                [
                    [0.3345, 0.4429, 0.6639],
                    [0.5041, 0.4175, 0.8437],
                    [0.6159, 0.3758, 0.4071],
                    [0.5417, 0.5785, 0.7671],
                    [0.3837, 0.9883, 0.0420],
                    [0.4808, 0.8989, 0.6144],
                ],
                [
                    [0.3930, 0.2098, 0.0602],
                    [0.2298, 0.9425, 0.0333],
                    [0.7409, 0.8172, 0.8879],
                    [0.4846, 0.0486, 0.2029],
                    [0.6741, 0.9765, 0.6864],
                    [0.2827, 0.5534, 0.2125],
                ],
            ]),
            &device,
        );

        let output = module.forward(input);

        let expected = TensorData::from([
            [
                [-1.06458, -0.2738, 1.33838],
                [-0.45848, -0.92929, 1.38777],
                [1.40388, -0.84877, -0.55511],
                [-0.88515, -0.51245, 1.3976],
                [-0.22397, 1.32124, -1.09727],
                [-1.05468, 1.34316, -0.28848],
            ],
            [
                [1.26372, -0.08229, -1.18144],
                [-0.44049, 1.38403, -0.94354],
                [-1.23979, 0.03109, 1.2087],
                [1.32524, -1.08999, -0.23524],
                [-0.75061, 1.4132, -0.66259],
                [-0.45469, 1.38697, -0.93228],
            ],
        ]);
        output.to_data().assert_approx_eq(&expected, 3);
    }

    #[test]
    fn display() {
        let config = InstanceNormConfig::new(6);
        let instance_norm = config.init::<TestBackend>(&Default::default());

        assert_eq!(
            format!("{}", instance_norm),
            "InstanceNorm {num_channels: 6, epsilon: 0.00001, affine: true, params: 12}"
        );
    }
}