1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
use crate as burn;
use crate::nn::Initializer;

use crate::config::Config;
use crate::module::Module;
use crate::module::Param;
use crate::module::{Content, DisplaySettings, ModuleDisplay};
use crate::tensor::backend::Backend;
use crate::tensor::Tensor;

/// Configuration to create a [GroupNorm](GroupNorm) layer using the [init function](GroupNormConfig::init).
#[derive(Debug, Config)]
pub struct GroupNormConfig {
    /// The number of groups to separate the channels into
    pub num_groups: usize,
    /// The number of channels expected in the input
    pub num_channels: usize,
    /// A value required for numerical stability. Default: 1e-5
    #[config(default = 1e-5)]
    pub epsilon: f64,
    /// A boolean value that when set to `true`, this module has learnable
    /// per-channel affine parameters initialized to ones (for weights)
    /// and zeros (for biases). Default: `true`
    #[config(default = true)]
    pub affine: bool,
}

/// Applies Group Normalization over a mini-batch of inputs as described in the paper [Group Normalization](https://arxiv.org/abs/1803.08494).
///
/// `Y = groupnorm(X) * γ + β`
///
/// Where:
/// - `X` is the input tensor
/// - `Y` is the output tensor
/// - `γ` is the learnable weight
/// - `β` is the learnable bias
///
/// Should be created using [GroupNormConfig](GroupNormConfig).
#[derive(Module, Debug)]
#[module(custom_display)]
pub struct GroupNorm<B: Backend> {
    /// The learnable weight
    pub gamma: Option<Param<Tensor<B, 1>>>,
    /// The learnable bias
    pub beta: Option<Param<Tensor<B, 1>>>,
    /// The number of groups to separate the channels into
    pub num_groups: usize,
    /// The number of channels expected in the input
    pub num_channels: usize,
    /// A value required for numerical stability
    pub epsilon: f64,
    /// A boolean value that when set to `true`, this module has learnable
    pub affine: bool,
}

impl<B: Backend> ModuleDisplay for GroupNorm<B> {
    fn custom_settings(&self) -> Option<DisplaySettings> {
        DisplaySettings::new()
            .with_new_line_after_attribute(false)
            .optional()
    }

    fn custom_content(&self, content: Content) -> Option<Content> {
        content
            .add("num_groups", &self.num_groups)
            .add("num_channels", &self.num_channels)
            .add("epsilon", &self.epsilon)
            .add("affine", &self.affine)
            .optional()
    }
}

impl GroupNormConfig {
    /// Initialize a new [group norm](GroupNorm) module.
    pub fn init<B: Backend>(&self, device: &B::Device) -> GroupNorm<B> {
        assert_eq!(
            self.num_channels % self.num_groups,
            0,
            "The number of channels must be divisible by the number of groups"
        );

        let (gamma, beta) = if self.affine {
            let gamma = Initializer::Ones.init([self.num_channels], device);
            let beta = Initializer::Zeros.init([self.num_channels], device);

            (Some(gamma), Some(beta))
        } else {
            (None, None)
        };

        GroupNorm {
            num_groups: self.num_groups,
            num_channels: self.num_channels,
            gamma,
            beta,
            epsilon: self.epsilon,
            affine: self.affine,
        }
    }
}

impl<B: Backend> GroupNorm<B> {
    /// Applies the forward pass on the input tensor.
    ///
    /// See [GroupNorm](GroupNorm) for more information.
    ///
    /// # Shapes
    ///
    /// - input: `[batch_size, num_channels, *]`
    /// - output: `[batch_size, num_channels, *]`
    pub fn forward<const D: usize>(&self, input: Tensor<B, D>) -> Tensor<B, D> {
        if input.shape().dims[1] != self.num_channels {
            panic!(
                "The number of channels in the input tensor should be equal to the number of channels in the GroupNorm module. Expected {}, got {}",
                self.num_channels,
                input.shape().dims[1]
            );
        }

        let gamma = self.gamma.as_ref().map(|x| x.val());
        let beta = self.beta.as_ref().map(|x| x.val());

        group_norm(
            input,
            gamma,
            beta,
            self.num_groups,
            self.epsilon,
            self.affine,
        )
    }
}

/// Applies Group Normalization over a mini-batch of inputs as described in the paper [Group Normalization](https://arxiv.org/abs/1803.08494).
///
/// `Y = groupnorm(X) * γ + β`
///
/// Where:
/// - `X` is the input tensor
/// - `Y` is the output tensor
/// - `γ` is the learnable weight
/// - `β` is the learnable bias
///
pub(crate) fn group_norm<B: Backend, const D: usize>(
    input: Tensor<B, D>,
    gamma: Option<Tensor<B, 1>>,
    beta: Option<Tensor<B, 1>>,
    num_groups: usize,
    epsilon: f64,
    affine: bool,
) -> Tensor<B, D> {
    if (beta.is_none() || gamma.is_none()) && affine {
        panic!("Affine is set to true, but gamma or beta is None");
    }

    let shape = input.shape();
    if shape.num_elements() <= 2 {
        panic!(
            "input rank for GroupNorm should be at least 3, but got {}",
            shape.num_elements()
        );
    }

    let batch_size = shape.dims[0];
    let num_channels = shape.dims[1];

    let hidden_size = shape.dims[2..].iter().product::<usize>() * num_channels / num_groups;
    let input = input.reshape([batch_size, num_groups, hidden_size]);

    let mean = input.clone().sum_dim(2) / hidden_size as f64;
    let input = input.sub(mean);

    let var = input.clone().powf_scalar(2.).sum_dim(2) / hidden_size as f64;
    let input_normalized = input.div(var.sqrt().add_scalar(epsilon));

    if affine {
        let mut affine_shape = [1; D];
        affine_shape[1] = num_channels;

        input_normalized
            .reshape(shape)
            .mul(gamma.clone().unwrap().reshape(affine_shape))
            .add(beta.clone().unwrap().reshape(affine_shape))
    } else {
        input_normalized.reshape(shape)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::tensor::TensorData;
    use crate::TestBackend;
    use alloc::format;

    #[test]
    fn group_norm_forward_affine_false() {
        let device = Default::default();
        let module = GroupNormConfig::new(2, 6)
            .with_affine(false)
            .init::<TestBackend>(&device);

        assert!(module.gamma.is_none());
        assert!(module.beta.is_none());

        let input = Tensor::<TestBackend, 3>::from_data(
            TensorData::from([
                [
                    [-0.3034, 0.2726, -0.9659],
                    [-1.1845, -1.3236, 0.0172],
                    [1.9507, 1.2554, -0.8625],
                    [1.0682, 0.3604, 0.3985],
                    [-0.4957, -0.4461, -0.9721],
                    [1.5157, -0.1546, -0.5596],
                ],
                [
                    [-1.6698, -0.4040, -0.7927],
                    [0.3736, -0.0975, -0.1351],
                    [-0.9461, 0.5461, -0.6334],
                    [-1.0919, -0.1158, 0.1213],
                    [-0.9535, 0.1281, 0.4372],
                    [-0.2845, 0.3488, 0.5641],
                ],
            ]),
            &device,
        );

        let output = module.forward(input);

        let expected = TensorData::from([
            [
                [-0.1653, 0.3748, -0.7866],
                [-0.9916, -1.1220, 0.1353],
                [1.9485, 1.2965, -0.6896],
                [1.2769, 0.3628, 0.4120],
                [-0.7427, -0.6786, -1.3578],
                [1.8547, -0.3022, -0.8252],
            ],
            [
                [-1.9342, 0.0211, -0.5793],
                [1.2223, 0.4945, 0.4365],
                [-0.8163, 1.4887, -0.3333],
                [-1.7960, -0.0392, 0.3875],
                [-1.5469, 0.3998, 0.9561],
                [-0.3428, 0.7970, 1.1845],
            ],
        ]);
        output.to_data().assert_approx_eq(&expected, 3);
    }

    #[test]
    fn group_norm_forward_affine_true() {
        let device = Default::default();
        let module = GroupNormConfig::new(3, 6)
            .with_affine(true)
            .init::<TestBackend>(&device);

        module
            .gamma
            .as_ref()
            .expect("gamma should not be None")
            .val()
            .to_data()
            .assert_approx_eq(&TensorData::ones::<f32, _>([6]), 3);

        module
            .beta
            .as_ref()
            .expect("beta should not be None")
            .val()
            .to_data()
            .assert_approx_eq(&TensorData::zeros::<f32, _>([6]), 3);

        let input = Tensor::<TestBackend, 3>::from_data(
            TensorData::from([
                [
                    [0.3345, 0.4429, 0.6639],
                    [0.5041, 0.4175, 0.8437],
                    [0.6159, 0.3758, 0.4071],
                    [0.5417, 0.5785, 0.7671],
                    [0.3837, 0.9883, 0.0420],
                    [0.4808, 0.8989, 0.6144],
                ],
                [
                    [0.3930, 0.2098, 0.0602],
                    [0.2298, 0.9425, 0.0333],
                    [0.7409, 0.8172, 0.8879],
                    [0.4846, 0.0486, 0.2029],
                    [0.6741, 0.9765, 0.6864],
                    [0.2827, 0.5534, 0.2125],
                ],
            ]),
            &device,
        );

        let output = module.forward(input);

        let expected = TensorData::from([
            [
                [-1.1694, -0.5353, 0.7572],
                [-0.1775, -0.6838, 1.8087],
                [0.5205, -1.3107, -1.0723],
                [-0.0459, 0.2351, 1.6734],
                [-0.5796, 1.3218, -1.6544],
                [-0.2744, 1.0406, 0.1459],
            ],
            [
                [0.2665, -0.3320, -0.8205],
                [-0.2667, 2.0612, -0.9085],
                [0.6681, 0.9102, 1.1345],
                [-0.1453, -1.5287, -1.0389],
                [0.4253, 1.5962, 0.4731],
                [-1.0903, -0.0419, -1.3623],
            ],
        ]);
        output.to_data().assert_approx_eq(&expected, 3);
    }

    #[test]
    fn display() {
        let config = GroupNormConfig::new(3, 6);
        let group_norm = config.init::<TestBackend>(&Default::default());

        assert_eq!(
            format!("{}", group_norm),
            "GroupNorm {num_groups: 3, num_channels: 6, epsilon: 0.00001, affine: true, params: 12}"
        );
    }
}