use crate as burn;
use crate::config::Config;
use crate::module::Param;
use crate::module::{Content, DisplaySettings, Module, ModuleDisplay};
use crate::tensor::{backend::Backend, Tensor};
use super::Initializer;
#[derive(Config, Debug)]
pub struct LinearConfig {
pub d_input: usize,
pub d_output: usize,
#[config(default = true)]
pub bias: bool,
#[config(
default = "Initializer::KaimingUniform{gain:1.0/num_traits::Float::sqrt(3.0), fan_out_only:false}"
)]
pub initializer: Initializer,
}
#[derive(Module, Debug)]
#[module(custom_display)]
pub struct Linear<B: Backend> {
pub weight: Param<Tensor<B, 2>>,
pub bias: Option<Param<Tensor<B, 1>>>,
}
impl LinearConfig {
pub fn init<B: Backend>(&self, device: &B::Device) -> Linear<B> {
let shape = [self.d_input, self.d_output];
let weight =
self.initializer
.init_with(shape, Some(self.d_input), Some(self.d_output), device);
let bias = if self.bias {
Some(self.initializer.init_with(
[self.d_output],
Some(self.d_input),
Some(self.d_output),
device,
))
} else {
None
};
Linear { weight, bias }
}
}
impl<B: Backend> Linear<B> {
pub fn forward<const D: usize>(&self, input: Tensor<B, D>) -> Tensor<B, D> {
if D == 1 {
return Self::forward::<2>(self, input.unsqueeze()).flatten(0, 1);
}
let output = input.matmul(self.weight.val().unsqueeze());
match &self.bias {
Some(bias) => output + bias.val().unsqueeze(),
None => output,
}
}
}
impl<B: Backend> ModuleDisplay for Linear<B> {
fn custom_settings(&self) -> Option<DisplaySettings> {
DisplaySettings::new()
.with_new_line_after_attribute(false)
.optional()
}
fn custom_content(&self, content: Content) -> Option<Content> {
let [d_input, d_output] = self.weight.shape().dims;
content
.add("d_input", &d_input)
.add("d_output", &d_output)
.add("bias", &self.bias.is_some())
.optional()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::tensor::{Shape, TensorData};
use crate::TestBackend;
#[test]
fn initializer_default() {
TestBackend::seed(0);
let config = LinearConfig::new(5, 5);
let k = (1.0 / config.d_input as f64).sqrt() as f32;
let device = Default::default();
let linear = config.init::<TestBackend>(&device);
assert_eq!(
config.initializer,
Initializer::KaimingUniform {
gain: 1.0 / 3.0f64.sqrt(),
fan_out_only: false
}
);
linear.weight.to_data().assert_within_range(-k..k);
}
#[test]
fn initializer_zeros() {
TestBackend::seed(0);
let config = LinearConfig::new(5, 5).with_initializer(Initializer::Zeros);
let device = Default::default();
let linear = config.init::<TestBackend>(&device);
assert_eq!(config.initializer, Initializer::Zeros);
linear
.weight
.to_data()
.assert_approx_eq(&TensorData::zeros::<f32, _>(linear.weight.shape()), 3);
}
#[test]
fn test_linear_forward_no_bias() {
TestBackend::seed(0);
let value = 2.;
let config = LinearConfig::new(2, 3)
.with_initializer(Initializer::Constant { value })
.with_bias(false);
let device = Default::default();
let linear = config.init::<TestBackend>(&device);
let input = Tensor::<TestBackend, 2>::ones(Shape::new([1, 2]), &device);
let result = linear.forward(input);
let expected_result = Tensor::<TestBackend, 2>::from_data([[4., 4., 4.]], &device);
assert_eq!(result.into_data(), expected_result.into_data());
}
#[test]
fn test_linear_forward_with_bias() {
TestBackend::seed(0);
let device = Default::default();
let value = 2.;
let config = LinearConfig::new(2, 3).with_initializer(Initializer::Constant { value });
let linear = config.init::<TestBackend>(&device);
let input = Tensor::<TestBackend, 2>::ones(Shape::new([1, 2]), &device);
let result = linear.forward(input);
let expected_result = Tensor::<TestBackend, 2>::from_data([[6., 6., 6.]], &device);
assert_eq!(result.into_data(), expected_result.into_data());
}
#[test]
fn test_linear_1d() {
TestBackend::seed(0);
let device = Default::default();
let value = 2.;
let config = LinearConfig::new(2, 3).with_initializer(Initializer::Constant { value });
let linear = config.init::<TestBackend>(&device);
let input_1d = Tensor::<TestBackend, 1>::ones(Shape::new([2]), &device);
let input_2d = Tensor::<TestBackend, 2>::ones(Shape::new([1, 2]), &device);
let result_1d = linear.forward(input_1d).unsqueeze::<2>();
let result_2d = linear.forward(input_2d);
assert_eq!(result_1d.into_data(), result_2d.into_data());
}
#[test]
fn display() {
let config = LinearConfig::new(3, 5);
let linear = config.init::<TestBackend>(&Default::default());
assert_eq!(
alloc::format!("{}", linear),
"Linear {d_input: 3, d_output: 5, bias: true, params: 20}"
);
}
}