1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
use alloc::format;

use burn_tensor::module::interpolate;

use crate as burn;

use crate::config::Config;
use crate::module::{Content, DisplaySettings, Ignored, Module, ModuleDisplay};
use crate::tensor::backend::Backend;
use crate::tensor::ops::InterpolateOptions;
use crate::tensor::Tensor;

use super::InterpolateMode;

/// Configuration for the 2D interpolation module.
///
/// This struct defines the configuration options for the 2D interpolation operation.
/// It allows specifying the output size, scale factor, and interpolation mode.
#[derive(Config, Debug)]
pub struct Interpolate2dConfig {
    /// Output size of the interpolated tensor.
    /// If specified, this takes precedence over `scale_factor`.
    #[config(default = "None")]
    pub output_size: Option<[usize; 2]>,

    /// Scale factor for resizing the input tensor.
    /// This is used when `output_size` is not specified.
    #[config(default = "None")]
    pub scale_factor: Option<[f32; 2]>,

    /// Interpolation mode to use for resizing.
    /// Determines how the output values are calculated.
    #[config(default = "InterpolateMode::Nearest")]
    pub mode: InterpolateMode,
}

/// Interpolate module for resizing tensors with shape [N, C, H, W].
///
/// This struct represents an interpolation module that can resize tensors
/// using various interpolation methods. It provides flexibility in specifying
/// either an output size or a scale factor for resizing, along with options
/// for the interpolation mode.
///
/// The module can be used to upsample or downsample tensors, preserving the
/// number of channels and batch size while adjusting the height and width
/// dimensions.
///
/// The module can be created using the [Interpolate2dConfig] struct and the
/// `init` method, which returns an instance of the [Interpolate2d] struct.
#[derive(Module, Clone, Debug)]
#[module(custom_display)]
pub struct Interpolate2d {
    /// Output size of the interpolated tensor
    pub output_size: Option<[usize; 2]>,

    /// Scale factor for resizing the input tensor
    pub scale_factor: Option<[f32; 2]>,

    /// Interpolation mode used for resizing
    pub mode: Ignored<InterpolateMode>,
}

impl Interpolate2dConfig {
    /// Initialize the interpolation module
    pub fn init(self) -> Interpolate2d {
        Interpolate2d {
            output_size: self.output_size,
            scale_factor: self.scale_factor,
            mode: Ignored(self.mode),
        }
    }
}
impl Interpolate2d {
    /// Performs the forward pass of the interpolation module
    ///
    /// # Arguments
    ///
    /// * `input` - Input tensor with shape [N, C, H, W]
    ///
    /// # Returns
    ///
    /// Resized tensor with shape [N, C, H', W'], where H' and W' are determined by
    /// the output_size or scale_factor specified in the module configuration
    ///
    /// # Example
    ///
    /// ```ignore
    /// let input = Tensor::<Backend, 2>::random([1, 3, 64, 64], Distribution::Uniform(0.0, 1.0), &device);
    /// let interpolate = Interpolate2dConfig::new()
    ///     .with_output_size(Some([128, 128]))
    ///     .init();
    /// let output = interpolate.forward(input);
    /// assert_eq!(output.dims(), [1, 3, 128, 128]);
    /// ```
    pub fn forward<B: Backend>(&self, input: Tensor<B, 4>) -> Tensor<B, 4> {
        let output_size = calculate_output_size(input.dims(), self.output_size, self.scale_factor);
        interpolate(
            input,
            output_size,
            InterpolateOptions::new(self.mode.0.clone().into()),
        )
    }
}

/// Calculates the output size for tensor interpolation.
///
/// # Arguments
///
/// * `input_dims` - The dimensions of the input tensor [N, C, H, W].
/// * `output_size` - Optional desired output size [H', W'].
/// * `scale_factor` - Optional scale factor for height and width [scale_h, scale_w].
///
/// # Returns
///
/// A tuple [H', W'] representing the calculated output size.
///
/// # Panics
///
/// Panics if neither `output_size` nor `scale_factor` is provided,
/// or if the scale factor results in dimensions exceeding usize::MAX.
fn calculate_output_size(
    input_dims: [usize; 4],
    output_size: Option<[usize; 2]>,
    scale_factor: Option<[f32; 2]>,
) -> [usize; 2] {
    match (output_size, scale_factor) {
        (Some(output_size), None) => {
            // Use provided
            output_size
        }
        (None, Some(scale_factor)) => {
            // Calculate output size based on scale factor
            let [_, _, h, w] = input_dims;

            let new_dim_h = (h as f64) * (scale_factor[0] as f64);

            if new_dim_h > usize::MAX as f64 {
                panic!("Scale factor for height is too large");
            }

            let new_dim_w = (w as f64) * (scale_factor[1] as f64);

            if new_dim_w > usize::MAX as f64 {
                panic!("Scale factor for width is too large");
            }

            [new_dim_h as usize, new_dim_w as usize]
        }
        _ => panic!("Either output_size or scale_factor must be provided"),
    }
}

impl ModuleDisplay for Interpolate2d {
    fn custom_settings(&self) -> Option<DisplaySettings> {
        DisplaySettings::new()
            .with_new_line_after_attribute(false)
            .optional()
    }

    fn custom_content(&self, content: Content) -> Option<Content> {
        content
            .add("mode", &self.mode)
            .add("output_size", &format!("{:?}", self.output_size))
            .add("scale_factor", &self.scale_factor)
            .optional()
    }
}
#[cfg(test)]
mod tests {
    use burn_tensor::Distribution;

    use crate::TestBackend;

    use super::*;

    #[test]
    fn test_calculate_output_size() {
        let input_dims = [1, 1, 4, 4];

        let output_size = calculate_output_size(input_dims, Some([2, 2]), None);
        assert_eq!(output_size, [2, 2]);

        let output_size = calculate_output_size(input_dims, None, Some([2.0, 2.0]));
        assert_eq!(output_size, [8, 8]);

        let output_size = calculate_output_size([1, 1, 4, 4], None, Some([0.5, 0.5]));
        assert_eq!(output_size, [2, 2]);

        let output_size = calculate_output_size([1, 1, 4, 4], None, Some([2.0, 1.5]));
        assert_eq!(output_size, [8, 6]);
    }

    #[test]
    #[should_panic(expected = "Either output_size or scale_factor must be provided")]
    fn test_missing_params() {
        calculate_output_size([1, 1, 4, 4], None, None);
    }

    #[test]
    #[should_panic(expected = "Scale factor for height is too large")]
    fn test_infinite_height() {
        calculate_output_size([1, 1, usize::MAX - 1, 4], None, Some([2.0, 1.0]));
    }

    #[test]
    #[should_panic(expected = "Scale factor for width is too large")]
    fn test_infinite_width() {
        calculate_output_size([1, 1, 4, usize::MAX - 1], None, Some([1.0, 2.0]));
    }

    #[test]
    fn test_module() {
        let input = Tensor::<TestBackend, 4>::random(
            [2, 3, 4, 4],
            Distribution::Uniform(0.0, 1.0),
            &Default::default(),
        );

        // Test with output_size
        let config = Interpolate2dConfig::new().with_output_size(Some([8, 8]));
        let interpolate = config.init();
        let output = interpolate.forward(input.clone());
        assert_eq!(output.dims(), [2, 3, 8, 8]);

        // Test with scale_factor
        let config = Interpolate2dConfig::new().with_scale_factor(Some([0.5, 0.5]));
        let interpolate = config.init();
        let output = interpolate.forward(input.clone());
        assert_eq!(output.dims(), [2, 3, 2, 2]);

        // Test with different interpolation mode
        let config = Interpolate2dConfig::new()
            .with_output_size(Some([6, 6]))
            .with_mode(InterpolateMode::Linear);
        let interpolate = config.init();
        let output = interpolate.forward(input);
        assert_eq!(output.dims(), [2, 3, 6, 6]);
    }

    #[test]
    fn display() {
        let config = Interpolate2dConfig::new().with_output_size(Some([20, 20]));
        let layer = config.init();

        assert_eq!(
            alloc::format!("{}", layer),
            "Interpolate2d {mode: Nearest, output_size: Some([20, 20]), \
            scale_factor: None}"
        );
    }
}