1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
use alloc::format;
use burn_tensor::module::interpolate;
use crate as burn;
use crate::config::Config;
use crate::module::{Content, DisplaySettings, Ignored, Module, ModuleDisplay};
use crate::tensor::backend::Backend;
use crate::tensor::ops::InterpolateOptions;
use crate::tensor::Tensor;
use super::InterpolateMode;
/// Configuration for the 1D interpolation module.
///
/// This struct defines the configuration options for the 1D interpolation operation.
/// It allows specifying the output size, scale factor, and interpolation mode.
#[derive(Config, Debug)]
pub struct Interpolate1dConfig {
/// Output size of the interpolated tensor.
/// If specified, this takes precedence over `scale_factor`.
#[config(default = "None")]
pub output_size: Option<usize>,
/// Scale factor for resizing the input tensor.
/// This is used when `output_size` is not specified.
#[config(default = "None")]
pub scale_factor: Option<f32>,
/// Interpolation mode to use for resizing.
/// Determines how the output values are calculated.
#[config(default = "InterpolateMode::Nearest")]
pub mode: InterpolateMode,
}
/// Interpolate module for resizing 1D tensors with shape [N, C, L].
///
/// This struct represents a 1D interpolation module that can resize tensors
/// using various interpolation methods. It provides flexibility in specifying
/// either an output size or a scale factor for resizing, along with options
/// for the interpolation mode.
///
/// The module can be used to upsample or downsample 1D tensors, preserving the
/// number of channels and batch size while adjusting the length dimension.
///
/// The module can be created using the [Interpolate1dConfig] struct and the
/// `init` method, which returns an instance of the [Interpolate1d] struct.
#[derive(Module, Clone, Debug)]
#[module(custom_display)]
pub struct Interpolate1d {
/// Output size of the interpolated tensor
pub output_size: Option<usize>,
/// Scale factor for resizing the input tensor
pub scale_factor: Option<f32>,
/// Interpolation mode used for resizing
pub mode: Ignored<InterpolateMode>,
}
impl Interpolate1dConfig {
/// Initialize the interpolation module
pub fn init(self) -> Interpolate1d {
Interpolate1d {
output_size: self.output_size,
scale_factor: self.scale_factor,
mode: Ignored(self.mode),
}
}
}
impl Interpolate1d {
/// Performs the forward pass of the 1D interpolation module
///
/// # Arguments
///
/// * `input` - Input tensor with shape [N, C, L]
///
/// # Returns
///
/// Resized tensor with shape [N, C, L'], where L' is determined by
/// the output_size or scale_factor specified in the module configuration
///
/// # Example
///
/// ```ignore
/// let input = Tensor::<Backend, 3>::random([1, 3, 64], Distribution::Uniform(0.0, 1.0), &device);
/// let interpolate = Interpolate1dConfig::new()
/// .with_output_size(Some(128))
/// .init();
/// let output = interpolate.forward(input);
/// assert_eq!(output.dims(), [1, 3, 128]);
/// ```
pub fn forward<B: Backend>(&self, input: Tensor<B, 3>) -> Tensor<B, 3> {
let output_size = calculate_output_size(input.dims(), self.output_size, self.scale_factor);
// Use the interpolate operation to resize the temporal input tensor
// by adding a new dimension for the interpolation axis
let input = input.unsqueeze_dim(2);
let result = interpolate(
input,
[1, output_size],
InterpolateOptions::new(self.mode.0.clone().into()),
);
result.squeeze_dims(&[2])
}
}
/// Calculate output size based on input dimensions, output size, and scale factor
///
/// # Arguments
///
/// * `input_dims` - Input dimensions of the tensor
/// * `output_size` - Output size for the interpolated tensor
/// * `scale_factor` - Scale factor for resizing the tensor
///
/// # Returns
///
/// Output size for the interpolated tensor
///
/// # Panics
///
/// Panics if neither output_size nor scale_factor is provided
/// or if the scale factor is too large
fn calculate_output_size(
input_dims: [usize; 3],
output_size: Option<usize>,
scale_factor: Option<f32>,
) -> usize {
match (output_size, scale_factor) {
(Some(output_size), None) => {
// Use provided
output_size
}
(None, Some(scale_factor)) => {
// Calculate output size based on scale factor
let [_, _, l] = input_dims;
let new_dim = (l as f64) * (scale_factor as f64);
if new_dim > usize::MAX as f64 {
panic!("Scale factor is too large");
}
new_dim as usize
}
_ => panic!("Either output_size or scale_factor must be provided"),
}
}
impl ModuleDisplay for Interpolate1d {
fn custom_settings(&self) -> Option<DisplaySettings> {
DisplaySettings::new()
.with_new_line_after_attribute(false)
.optional()
}
fn custom_content(&self, content: Content) -> Option<Content> {
content
.add("mode", &self.mode)
.add("output_size", &format!("{:?}", self.output_size))
.add("scale_factor", &self.scale_factor)
.optional()
}
}
#[cfg(test)]
mod tests {
use burn_tensor::Distribution;
use super::*;
use crate::TestBackend;
#[test]
fn test_calculate_output_size() {
let input_dims = [1, 1, 4];
let output_size = calculate_output_size(input_dims, Some(2), None);
assert_eq!(output_size, 2);
let output_size = calculate_output_size(input_dims, None, Some(2.0));
assert_eq!(output_size, 8);
let output_size = calculate_output_size(input_dims, None, Some(0.5));
assert_eq!(output_size, 2);
let output_size = calculate_output_size(input_dims, None, Some(1.5));
assert_eq!(output_size, 6);
}
#[test]
#[should_panic(expected = "Either output_size or scale_factor must be provided")]
fn test_panic() {
let input_dims = [1, 1, 4];
calculate_output_size(input_dims, None, None);
}
#[test]
#[should_panic(expected = "Scale factor is too large")]
fn test_large_scale_factor() {
let input_dims = [1, 1, usize::MAX - 1];
calculate_output_size(input_dims, None, Some(2.0));
}
#[test]
fn test_module() {
let input = Tensor::<TestBackend, 3>::random(
[2, 3, 4],
Distribution::Uniform(0.0, 1.0),
&Default::default(),
);
// Test with output_size
let config = Interpolate1dConfig::new().with_output_size(Some(8));
let interpolate = config.init();
let output = interpolate.forward(input.clone());
assert_eq!(output.dims(), [2, 3, 8]);
// Test with scale_factor
let config = Interpolate1dConfig::new().with_scale_factor(Some(0.5));
let interpolate = config.init();
let output = interpolate.forward(input.clone());
assert_eq!(output.dims(), [2, 3, 2]);
// Test with different interpolation mode
let config = Interpolate1dConfig::new()
.with_output_size(Some(6))
.with_mode(InterpolateMode::Linear);
let interpolate = config.init();
let output = interpolate.forward(input);
assert_eq!(output.dims(), [2, 3, 6]);
}
#[test]
fn display() {
let config = Interpolate1dConfig::new().with_output_size(Some(20));
let layer = config.init();
assert_eq!(
alloc::format!("{}", layer),
"Interpolate1d {mode: Nearest, output_size: Some(20), \
scale_factor: None}"
);
}
}