1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
use alloc::format;

use burn_tensor::module::interpolate;

use crate as burn;

use crate::config::Config;
use crate::module::{Content, DisplaySettings, Ignored, Module, ModuleDisplay};
use crate::tensor::backend::Backend;
use crate::tensor::ops::InterpolateOptions;
use crate::tensor::Tensor;

use super::InterpolateMode;

/// Configuration for the 1D interpolation module.
///
/// This struct defines the configuration options for the 1D interpolation operation.
/// It allows specifying the output size, scale factor, and interpolation mode.
#[derive(Config, Debug)]
pub struct Interpolate1dConfig {
    /// Output size of the interpolated tensor.
    /// If specified, this takes precedence over `scale_factor`.
    #[config(default = "None")]
    pub output_size: Option<usize>,

    /// Scale factor for resizing the input tensor.
    /// This is used when `output_size` is not specified.
    #[config(default = "None")]
    pub scale_factor: Option<f32>,

    /// Interpolation mode to use for resizing.
    /// Determines how the output values are calculated.
    #[config(default = "InterpolateMode::Nearest")]
    pub mode: InterpolateMode,
}

/// Interpolate module for resizing 1D tensors with shape [N, C, L].
///
/// This struct represents a 1D interpolation module that can resize tensors
/// using various interpolation methods. It provides flexibility in specifying
/// either an output size or a scale factor for resizing, along with options
/// for the interpolation mode.
///
/// The module can be used to upsample or downsample 1D tensors, preserving the
/// number of channels and batch size while adjusting the length dimension.
///
/// The module can be created using the [Interpolate1dConfig] struct and the
/// `init` method, which returns an instance of the [Interpolate1d] struct.
#[derive(Module, Clone, Debug)]
#[module(custom_display)]
pub struct Interpolate1d {
    /// Output size of the interpolated tensor
    pub output_size: Option<usize>,

    /// Scale factor for resizing the input tensor
    pub scale_factor: Option<f32>,

    /// Interpolation mode used for resizing
    pub mode: Ignored<InterpolateMode>,
}

impl Interpolate1dConfig {
    /// Initialize the interpolation module
    pub fn init(self) -> Interpolate1d {
        Interpolate1d {
            output_size: self.output_size,
            scale_factor: self.scale_factor,
            mode: Ignored(self.mode),
        }
    }
}

impl Interpolate1d {
    /// Performs the forward pass of the 1D interpolation module
    ///
    /// # Arguments
    ///
    /// * `input` - Input tensor with shape [N, C, L]
    ///
    /// # Returns
    ///
    /// Resized tensor with shape [N, C, L'], where L' is determined by
    /// the output_size or scale_factor specified in the module configuration
    ///
    /// # Example
    ///
    /// ```ignore
    /// let input = Tensor::<Backend, 3>::random([1, 3, 64], Distribution::Uniform(0.0, 1.0), &device);
    /// let interpolate = Interpolate1dConfig::new()
    ///     .with_output_size(Some(128))
    ///     .init();
    /// let output = interpolate.forward(input);
    /// assert_eq!(output.dims(), [1, 3, 128]);
    /// ```
    pub fn forward<B: Backend>(&self, input: Tensor<B, 3>) -> Tensor<B, 3> {
        let output_size = calculate_output_size(input.dims(), self.output_size, self.scale_factor);

        // Use the interpolate operation to resize the temporal input tensor
        // by adding a new dimension for the interpolation axis
        let input = input.unsqueeze_dim(2);

        let result = interpolate(
            input,
            [1, output_size],
            InterpolateOptions::new(self.mode.0.clone().into()),
        );

        result.squeeze_dims(&[2])
    }
}

/// Calculate output size based on input dimensions, output size, and scale factor
///
/// # Arguments
///
/// * `input_dims` - Input dimensions of the tensor
/// * `output_size` - Output size for the interpolated tensor
/// * `scale_factor` - Scale factor for resizing the tensor
///
/// # Returns
///
/// Output size for the interpolated tensor
///
/// # Panics
///
/// Panics if neither output_size nor scale_factor is provided
/// or if the scale factor is too large
fn calculate_output_size(
    input_dims: [usize; 3],
    output_size: Option<usize>,
    scale_factor: Option<f32>,
) -> usize {
    match (output_size, scale_factor) {
        (Some(output_size), None) => {
            // Use provided
            output_size
        }
        (None, Some(scale_factor)) => {
            // Calculate output size based on scale factor
            let [_, _, l] = input_dims;

            let new_dim = (l as f64) * (scale_factor as f64);

            if new_dim > usize::MAX as f64 {
                panic!("Scale factor is too large");
            }

            new_dim as usize
        }
        _ => panic!("Either output_size or scale_factor must be provided"),
    }
}

impl ModuleDisplay for Interpolate1d {
    fn custom_settings(&self) -> Option<DisplaySettings> {
        DisplaySettings::new()
            .with_new_line_after_attribute(false)
            .optional()
    }

    fn custom_content(&self, content: Content) -> Option<Content> {
        content
            .add("mode", &self.mode)
            .add("output_size", &format!("{:?}", self.output_size))
            .add("scale_factor", &self.scale_factor)
            .optional()
    }
}

#[cfg(test)]
mod tests {

    use burn_tensor::Distribution;

    use super::*;
    use crate::TestBackend;
    #[test]
    fn test_calculate_output_size() {
        let input_dims = [1, 1, 4];

        let output_size = calculate_output_size(input_dims, Some(2), None);
        assert_eq!(output_size, 2);

        let output_size = calculate_output_size(input_dims, None, Some(2.0));
        assert_eq!(output_size, 8);

        let output_size = calculate_output_size(input_dims, None, Some(0.5));
        assert_eq!(output_size, 2);

        let output_size = calculate_output_size(input_dims, None, Some(1.5));
        assert_eq!(output_size, 6);
    }

    #[test]
    #[should_panic(expected = "Either output_size or scale_factor must be provided")]
    fn test_panic() {
        let input_dims = [1, 1, 4];
        calculate_output_size(input_dims, None, None);
    }

    #[test]
    #[should_panic(expected = "Scale factor is too large")]
    fn test_large_scale_factor() {
        let input_dims = [1, 1, usize::MAX - 1];
        calculate_output_size(input_dims, None, Some(2.0));
    }

    #[test]
    fn test_module() {
        let input = Tensor::<TestBackend, 3>::random(
            [2, 3, 4],
            Distribution::Uniform(0.0, 1.0),
            &Default::default(),
        );

        // Test with output_size
        let config = Interpolate1dConfig::new().with_output_size(Some(8));
        let interpolate = config.init();
        let output = interpolate.forward(input.clone());
        assert_eq!(output.dims(), [2, 3, 8]);

        // Test with scale_factor
        let config = Interpolate1dConfig::new().with_scale_factor(Some(0.5));
        let interpolate = config.init();
        let output = interpolate.forward(input.clone());
        assert_eq!(output.dims(), [2, 3, 2]);

        // Test with different interpolation mode
        let config = Interpolate1dConfig::new()
            .with_output_size(Some(6))
            .with_mode(InterpolateMode::Linear);
        let interpolate = config.init();
        let output = interpolate.forward(input);
        assert_eq!(output.dims(), [2, 3, 6]);
    }

    #[test]
    fn display() {
        let config = Interpolate1dConfig::new().with_output_size(Some(20));
        let layer = config.init();

        assert_eq!(
            alloc::format!("{}", layer),
            "Interpolate1d {mode: Nearest, output_size: Some(20), \
            scale_factor: None}"
        );
    }
}