1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
use alloc::format;

use crate as burn;

use crate::{
    config::Config,
    module::{Content, DisplaySettings, Ignored, Module, ModuleDisplay, Param},
    nn::{conv::checks, Initializer, PaddingConfig1d},
    tensor::{backend::Backend, module::conv1d, ops::ConvOptions, Tensor},
};

/// Configuration to create a [1D convolution](Conv1d) layer using the [init function](Conv1dConfig::init).
#[derive(Config, Debug)]
pub struct Conv1dConfig {
    /// The number of input channels.
    pub channels_in: usize,
    /// The number of output channels.
    pub channels_out: usize,
    /// The size of the kernel.
    pub kernel_size: usize,
    /// The stride of the convolution.
    #[config(default = "1")]
    pub stride: usize,
    /// Spacing between kernel elements.
    #[config(default = "1")]
    pub dilation: usize,
    /// Controls the connections between input and output channels.
    #[config(default = "1")]
    pub groups: usize,
    /// The padding configuration.
    #[config(default = "PaddingConfig1d::Valid")]
    pub padding: PaddingConfig1d,
    /// If bias should be added to the output.
    #[config(default = true)]
    pub bias: bool,
    /// The type of function used to initialize neural network parameters
    #[config(
        default = "Initializer::KaimingUniform{gain:1.0/num_traits::Float::sqrt(3.0),fan_out_only:false}"
    )]
    pub initializer: Initializer,
}

/// Applies a 1D convolution over input tensors.
///
/// Should be created with [Conv1dConfig].
#[derive(Module, Debug)]
#[module(custom_display)]
pub struct Conv1d<B: Backend> {
    /// Tensor of shape `[channels_out, channels_in / groups, kernel_size]`
    pub weight: Param<Tensor<B, 3>>,
    /// Tensor of shape `[channels_out]`
    pub bias: Option<Param<Tensor<B, 1>>>,
    /// Stride of the convolution.
    pub stride: usize,
    /// Size of the kernel.
    pub kernel_size: usize,
    /// Spacing between kernel elements.
    pub dilation: usize,
    /// Controls the connections between input and output channels.
    pub groups: usize,
    /// Padding configuration.
    pub padding: Ignored<PaddingConfig1d>,
}

impl<B: Backend> ModuleDisplay for Conv1d<B> {
    fn custom_settings(&self) -> Option<DisplaySettings> {
        DisplaySettings::new()
            .with_new_line_after_attribute(false)
            .optional()
    }

    fn custom_content(&self, content: Content) -> Option<Content> {
        // Since padding does not implement ModuleDisplay, we need to format it manually.
        let padding_formatted = format!("{}", &self.padding);

        content
            .add("stride", &self.stride)
            .add("kernel_size", &self.kernel_size)
            .add("dilation", &self.dilation)
            .add("groups", &self.groups)
            .add("padding", &padding_formatted)
            .optional()
    }
}

impl Conv1dConfig {
    /// Initialize a new [conv1d](Conv1d) module.
    pub fn init<B: Backend>(&self, device: &B::Device) -> Conv1d<B> {
        checks::checks_channels_div_groups(self.channels_in, self.channels_out, self.groups);

        let shape = [
            self.channels_out,
            self.channels_in / self.groups,
            self.kernel_size,
        ];

        let fan_in: usize = self.channels_in / self.groups * self.kernel_size;
        let weight = self
            .initializer
            .init_with(shape, Some(fan_in), None, device);
        let mut bias = None;

        if self.bias {
            bias =
                Some(
                    self.initializer
                        .init_with([self.channels_out], Some(fan_in), None, device),
                );
        }

        Conv1d {
            weight,
            bias,
            stride: self.stride,
            kernel_size: self.kernel_size,
            padding: Ignored(self.padding.clone()),
            dilation: self.dilation,
            groups: self.groups,
        }
    }
}

impl<B: Backend> Conv1d<B> {
    /// Applies the forward pass on the input tensor.
    ///
    /// See [conv1d](crate::tensor::module::conv1d) for more information.
    ///
    /// # Shapes
    ///
    /// - input: `[batch_size, channels_in, length_in]`
    /// - output: `[batch_size, channels_out, length_out]`
    pub fn forward(&self, input: Tensor<B, 3>) -> Tensor<B, 3> {
        let [_batch_size, _channels, length] = input.dims();
        let padding = self
            .padding
            .calculate_padding_1d(length, self.kernel_size, self.stride);

        conv1d(
            input,
            self.weight.val(),
            self.bias.as_ref().map(|bias| bias.val()),
            ConvOptions::new([self.stride], [padding], [self.dilation], self.groups),
        )
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::tensor::TensorData;
    use crate::TestBackend;

    #[test]
    fn initializer_default() {
        TestBackend::seed(0);

        let config = Conv1dConfig::new(5, 5, 5);
        let k = (config.channels_in * config.kernel_size) as f64;
        let k = (config.groups as f64 / k).sqrt() as f32;
        let conv = config.init::<TestBackend>(&Default::default());

        conv.weight.to_data().assert_within_range(-k..k);
    }

    #[test]
    fn initializer_zeros() {
        TestBackend::seed(0);

        let config = Conv1dConfig::new(5, 5, 5).with_initializer(Initializer::Zeros);
        let conv = config.init::<TestBackend>(&Default::default());

        assert_eq!(config.initializer, Initializer::Zeros);
        conv.weight
            .to_data()
            .assert_approx_eq(&TensorData::zeros::<f32, _>(conv.weight.shape()), 3);
    }

    #[test]
    fn display() {
        let config = Conv1dConfig::new(5, 5, 5);
        let conv = config.init::<TestBackend>(&Default::default());

        assert_eq!(
            alloc::format!("{}", conv),
            "Conv1d {stride: 1, kernel_size: 5, dilation: 1, groups: 1, padding: Valid, params: 130}"
        );
    }
}