1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
use super::ParamId;
use alloc::boxed::Box;
use alloc::format;
use burn_common::stub::RwLock;
use core::cell::OnceCell;
use core::ops::Deref;
/// Parameters are the fundamental building blocks of [modules](crate::module::Module) where they
/// serve as containers for [tensors](crate::tensor::Tensor) that can be updated during
/// training, and loaded during inference. If you don't want to save the tensors with a record
/// and/or don't want to update it during training, you don't need this type to wrap your tensor.
///
/// # Laziness
///
/// The initialization of parameters can be lazy when created using
/// [uninitialized](Self::uninitialized), which can be done using an [initializer](crate::nn::Initializer).
///
/// This reduces the amount of allocations done when loading a model for inference without having
/// to create a custom initialization function only for inference.
///
/// ## Example
///
/// ```rust, ignore
/// let device = Device::default();
/// let config = ModuleConfig::default();
/// let record = Recorder::new().load("/path/to/module", &device);
///
/// // No tensor allocation
/// let module = config.init(device);
/// // Will use the tensor allocated for the record if the same device is used.
/// let module = module.load_record(record);
/// ```
pub struct Param<T: Parameter> {
/// The unique ID of this parameter. This is used by eg. optimizers to associate a gradient with a specific parameter.
pub id: ParamId,
state: OnceCell<T>,
/// The locking is only required because of `lazy_device` and `lazy_is_require_grad`.
///
/// Because of once cell, we have a guarantee that the initialization will only be called once,
/// but it may be called at the same time as `lazy_device` and `lazy_is_require_grad`, which is
/// when the lock is actually useful, waiting for the initialization to be completed before
/// returning the value.
initialization: Option<RwLock<Option<Uninitialized<T>>>>,
}
impl<T: Parameter> core::fmt::Display for Param<T> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.write_str(format!("Param: {}", self.id).as_str())
}
}
impl<T: Parameter> core::fmt::Debug for Param<T> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.write_str(format!("Param: {}", self.id).as_str())
}
}
/// Trait that defines what is necessary for a type to be a parameter.
pub trait Parameter: Clone + core::fmt::Debug + Send {
/// The device type to be used.
type Device: Clone;
/// Fetch the device.
fn device(&self) -> Self::Device;
/// Fetch the gradient requirement.
fn is_require_grad(&self) -> bool;
/// Set the gradient requirement.
fn set_require_grad(self, require_grad: bool) -> Self;
}
#[allow(clippy::type_complexity)]
struct Uninitialized<P: Parameter> {
init: Box<dyn Fn(&P::Device, bool) -> P + Send>,
device: P::Device,
is_require_grad: bool,
}
impl<P: Parameter> Uninitialized<P> {
fn initialize(&self) -> P {
let init = &self.init;
init(&self.device, self.is_require_grad)
}
}
impl<T: Parameter> Param<T> {
/// Create a new parameter that is already initialized.
pub fn initialized(id: ParamId, value: T) -> Self {
Self {
id,
state: OnceCell::from(value),
initialization: None,
}
}
/// Create a new parameter that is not already initialized.
pub fn uninitialized<F>(id: ParamId, init: F, device: T::Device, is_require_grad: bool) -> Self
where
F: Fn(&T::Device, bool) -> T + Send + 'static,
{
Self {
id,
state: OnceCell::new(),
initialization: Some(RwLock::new(Some(Uninitialized {
init: Box::new(init),
device,
is_require_grad,
}))),
}
}
/// Gets the parameter value.
pub fn val(&self) -> T {
self.state
.get_or_init(|| {
let mut result = self
.initialization
.as_ref()
.expect("Should have an initialization when no state provided.")
.write()
.unwrap();
let state = result.as_ref().expect("Should exist when not initialized");
let tensor = state.initialize();
*result = None;
tensor
})
.clone()
}
/// Gets the parameter's value while consuming the parameter.
pub fn into_value(self) -> T {
self.consume().1
}
/// Gets the parameter id and value while consuming the parameter.
pub fn consume(self) -> (ParamId, T) {
let tensor = self.val();
core::mem::drop(self.state);
(self.id, tensor)
}
/// Execute the given function on the inner value.
pub fn map<F: Fn(T) -> T>(self, func: F) -> Self {
let (id, tensor) = self.consume();
let tensor = func(tensor);
Self {
id,
state: OnceCell::from(tensor),
initialization: None,
}
}
/// The device on which the parameter is or will be initialized.
///
/// This should be used instead of [crate::tensor::Tensor::device], since using the tensor
/// function requires a dereference, which triggers the initialization. This is only useful
/// when the device is used for updating the tensor value, which has potentially not been
/// initialized yet, like loading a record.
///
/// # Notes
///
/// This is a crate-private function, since users are not expected to use the device of an
/// uninitialized module to then override its value. All low-level functions should be provided
/// by `burn` and should handle those details.
pub(crate) fn lazy_device(&self) -> T::Device {
let initialization = match &self.initialization {
Some(init) => init,
None => return self.device(),
};
let init = initialization.read().unwrap();
match init.as_ref() {
Some(value) => value.device.clone(),
None => self.device(),
}
}
/// The gradient requirement on which the parameter is or will be initialized.
///
/// This should be used instead of [crate::tensor::Tensor::is_require_grad], since using the tensor
/// function requires a dereference, which triggers the initialization. This is only useful
/// when the boolean is used for updating the tensor value, which has potentially not been
/// initialized yet, like loading a record.
///
/// # Notes
///
/// This is a crate-private function, since users are not expected to use `is_require_grad` of an
/// uninitialized module to then override its value. All low-level functions should be provided
/// by `burn` and should handle those details.
pub(crate) fn lazy_is_require_grad(&self) -> bool {
let initialization = match &self.initialization {
Some(init) => init,
None => return self.is_require_grad(),
};
let init = initialization.read().unwrap();
match init.as_ref() {
Some(value) => value.is_require_grad,
None => self.is_require_grad(),
}
}
/// Override the gradient requirement for the current parameter.
pub fn set_require_grad(self, require_grad: bool) -> Self {
let initialization = match &self.initialization {
Some(init) => init,
None => return self.map(|tensor| tensor.set_require_grad(require_grad)),
};
let mut init = initialization.write().unwrap();
let mut is_lazy = false;
if let Some(value) = init.as_mut() {
is_lazy = true;
value.is_require_grad = require_grad;
};
core::mem::drop(init);
if is_lazy {
return self;
}
self.map(|tensor| tensor.set_require_grad(require_grad))
}
}
impl<T: Parameter> Clone for Param<T> {
fn clone(&self) -> Self {
Param::initialized(self.id.clone(), self.val())
}
}
impl<T: Parameter> Deref for Param<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
self.state.get_or_init(|| {
let mut result = self
.initialization
.as_ref()
.expect("Should have an initialization when no state provided.")
.write()
.unwrap();
let state = result.as_ref().expect("Should exist when not initialized");
let tensor = state.initialize();
*result = None;
tensor
})
}
}