1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
use crate as burn;
use crate::config::Config;
use crate::module::Module;
use crate::nn::PaddingConfig1d;
use crate::tensor::backend::Backend;
use crate::tensor::Tensor;
use burn_tensor::module::avg_pool1d;
/// Configuration to create a [1D avg pooling](AvgPool1d) layer.
#[derive(Config)]
pub struct AvgPool1dConfig {
/// The size of the kernel.
pub kernel_size: usize,
/// The stride.
#[config(default = "1")]
pub stride: usize,
/// The padding configuration.
#[config(default = "PaddingConfig1d::Valid")]
pub padding: PaddingConfig1d,
/// If the padding is counted in the denominator when computing the average.
#[config(default = "true")]
count_include_pad: bool,
}
/// Applies a 1D avg pooling over input tensors.
///
/// See [AvgPool1dConfig](AvgPool1dConfig) for details.
///
/// # Remarks
///
/// The zero-padding values will be included in the calculation
/// of the average. This means that the zeros are counted as
/// legitimate values, and they contribute to the denominator
/// when calculating the average. This is equivalent to
/// `torch.nn.AvgPool2d` with `count_include_pad=True`.
///
/// TODO: Add support for `count_include_pad=False`, see
/// [Issue 636](https://github.com/tracel-ai/burn/issues/636)
#[derive(Module, Clone, Debug)]
pub struct AvgPool1d {
stride: usize,
kernel_size: usize,
padding: PaddingConfig1d,
count_include_pad: bool,
}
impl AvgPool1dConfig {
/// Initialize a new [avg pool 1d](AvgPool1d) module.
pub fn init(&self) -> AvgPool1d {
AvgPool1d {
stride: self.stride,
kernel_size: self.kernel_size,
padding: self.padding.clone(),
count_include_pad: self.count_include_pad,
}
}
}
impl AvgPool1d {
/// Applies the forward pass on the input tensor.
///
/// # Shapes
///
/// - input: [batch_size, channels, length_in],
/// - output: [batch_size, channels, length_out],
pub fn forward<B: Backend>(&self, input: Tensor<B, 3>) -> Tensor<B, 3> {
let [_batch_size, _channels, length] = input.dims();
let padding = self
.padding
.calculate_padding_1d(length, self.kernel_size, self.stride);
avg_pool1d(
input,
self.kernel_size,
self.stride,
padding,
self.count_include_pad,
)
}
}