1use crate::{
2 Backend, TensorMetadata,
3 element::ElementConversion,
4 ops::{GridSampleOptions, GridSamplePaddingMode, InterpolateMode},
5 tensor::FloatTensor,
6};
7use alloc::vec;
8use burn_std::{Shape, Slice};
9
10pub fn float_grid_sample_2d_ref<B: Backend>(
23 tensor: FloatTensor<B>,
24 grid: FloatTensor<B>,
25 options: GridSampleOptions,
26) -> FloatTensor<B> {
27 match options.mode {
28 InterpolateMode::Bilinear => float_grid_sample_2d_bilinear::<B>(
29 tensor,
30 grid,
31 options.padding_mode,
32 options.align_corners,
33 ),
34 _ => todo!(
35 "Default implementation for grid_sample_2d with {:?} unimplemented",
36 options.mode
37 ),
38 }
39}
40
41fn float_grid_sample_2d_bilinear<B: Backend>(
43 tensor: FloatTensor<B>,
44 grid: FloatTensor<B>,
45 padding_mode: GridSamplePaddingMode,
46 align_corners: bool,
47) -> FloatTensor<B> {
48 let n = tensor.shape().dims[0];
49 let c = tensor.shape().dims[1];
50 let h_in = tensor.shape().dims[2];
51 let w_in = tensor.shape().dims[3];
52 let h_out = grid.shape().dims[1];
53 let w_out = grid.shape().dims[2];
54 let spatial_in = h_in * w_in;
55 let spatial_out = h_out * w_out;
56
57 let grid_x_slice = vec![
60 Slice::new(0, Some(n as isize), 1),
61 Slice::new(0, Some(h_out as isize), 1),
62 Slice::new(0, Some(w_out as isize), 1),
63 Slice::new(0, Some(1), 1),
64 ];
65 let grid_y_slice = vec![
66 Slice::new(0, Some(n as isize), 1),
67 Slice::new(0, Some(h_out as isize), 1),
68 Slice::new(0, Some(w_out as isize), 1),
69 Slice::new(1, Some(2), 1),
70 ];
71
72 let grid_x = B::float_slice(grid.clone(), &grid_x_slice);
73 let grid_x = B::float_reshape(grid_x, Shape::new([n, 1, h_out, w_out]));
74 let grid_y = B::float_slice(grid.clone(), &grid_y_slice);
75 let grid_y = B::float_reshape(grid_y, Shape::new([n, 1, h_out, w_out]));
76
77 let w_in_f = w_in as f64;
79 let h_in_f = h_in as f64;
80
81 let (grid_x, grid_y) = if align_corners {
82 let grid_x = B::float_add_scalar(grid_x, 1.0f32.elem());
85 let grid_x = B::float_mul_scalar(grid_x, ((w_in_f - 1.0) / 2.0).elem());
86
87 let grid_y = B::float_add_scalar(grid_y, 1.0f32.elem());
88 let grid_y = B::float_mul_scalar(grid_y, ((h_in_f - 1.0) / 2.0).elem());
89
90 (grid_x, grid_y)
91 } else {
92 let grid_x = B::float_add_scalar(grid_x, 1.0f32.elem());
95 let grid_x = B::float_mul_scalar(grid_x, (w_in_f / 2.0).elem());
96 let grid_x = B::float_sub_scalar(grid_x, 0.5f32.elem());
97
98 let grid_y = B::float_add_scalar(grid_y, 1.0f32.elem());
99 let grid_y = B::float_mul_scalar(grid_y, (h_in_f / 2.0).elem());
100 let grid_y = B::float_sub_scalar(grid_y, 0.5f32.elem());
101
102 (grid_x, grid_y)
103 };
104
105 let (grid_x, grid_y) = match padding_mode {
107 GridSamplePaddingMode::Border => {
108 let grid_x = B::float_clamp(grid_x, 0.0f32.elem(), ((w_in - 1) as f32).elem());
110 let grid_y = B::float_clamp(grid_y, 0.0f32.elem(), ((h_in - 1) as f32).elem());
111 (grid_x, grid_y)
112 }
113 GridSamplePaddingMode::Reflection => {
114 let grid_x = reflect_coordinates::<B>(grid_x, w_in_f, align_corners);
116 let grid_y = reflect_coordinates::<B>(grid_y, h_in_f, align_corners);
117 (grid_x, grid_y)
118 }
119 GridSamplePaddingMode::Zeros => {
120 (grid_x, grid_y)
122 }
123 };
124
125 let grid_x_floored = B::float_floor(grid_x.clone());
127 let grid_y_floored = B::float_floor(grid_y.clone());
128
129 let x_frac = B::float_sub(grid_x.clone(), grid_x_floored.clone());
131 let y_frac = B::float_sub(grid_y.clone(), grid_y_floored.clone());
132
133 let x0 = B::float_into_int(grid_x_floored.clone());
135 let y0 = B::float_into_int(grid_y_floored.clone());
136 let x1 = B::float_into_int(B::float_add_scalar(grid_x_floored, 1.0f32.elem()));
137 let y1 = B::float_into_int(B::float_add_scalar(grid_y_floored, 1.0f32.elem()));
138
139 let (mask_00, mask_01, mask_10, mask_11) = if padding_mode == GridSamplePaddingMode::Zeros {
141 let x0_valid = B::int_greater_equal_elem(x0.clone(), 0.elem());
142 let x0_valid = B::bool_and(
143 x0_valid,
144 B::int_lower_elem(x0.clone(), (w_in as i32).elem()),
145 );
146 let x1_valid = B::int_greater_equal_elem(x1.clone(), 0.elem());
147 let x1_valid = B::bool_and(
148 x1_valid,
149 B::int_lower_elem(x1.clone(), (w_in as i32).elem()),
150 );
151 let y0_valid = B::int_greater_equal_elem(y0.clone(), 0.elem());
152 let y0_valid = B::bool_and(
153 y0_valid,
154 B::int_lower_elem(y0.clone(), (h_in as i32).elem()),
155 );
156 let y1_valid = B::int_greater_equal_elem(y1.clone(), 0.elem());
157 let y1_valid = B::bool_and(
158 y1_valid,
159 B::int_lower_elem(y1.clone(), (h_in as i32).elem()),
160 );
161
162 (
163 Some(B::bool_and(x0_valid.clone(), y0_valid.clone())),
164 Some(B::bool_and(x0_valid.clone(), y1_valid.clone())),
165 Some(B::bool_and(x1_valid.clone(), y0_valid)),
166 Some(B::bool_and(x1_valid, y1_valid)),
167 )
168 } else {
169 (None, None, None, None)
170 };
171
172 let x0_clamped = B::int_clamp(x0, 0.elem(), ((w_in - 1) as i32).elem());
174 let x1_clamped = B::int_clamp(x1, 0.elem(), ((w_in - 1) as i32).elem());
175 let y0_clamped = B::int_clamp(y0, 0.elem(), ((h_in - 1) as i32).elem());
176 let y1_clamped = B::int_clamp(y1, 0.elem(), ((h_in - 1) as i32).elem());
177
178 let w_in_scalar: i32 = w_in as i32;
180 let idx_00 = B::int_add(
181 B::int_mul_scalar(y0_clamped.clone(), w_in_scalar.elem()),
182 x0_clamped.clone(),
183 );
184 let idx_01 = B::int_add(
185 B::int_mul_scalar(y1_clamped.clone(), w_in_scalar.elem()),
186 x0_clamped,
187 );
188 let idx_10 = B::int_add(
189 B::int_mul_scalar(y0_clamped, w_in_scalar.elem()),
190 x1_clamped.clone(),
191 );
192 let idx_11 = B::int_add(
193 B::int_mul_scalar(y1_clamped, w_in_scalar.elem()),
194 x1_clamped,
195 );
196
197 let idx_00 = B::int_reshape(idx_00, Shape::new([n, 1, spatial_out]));
199 let idx_01 = B::int_reshape(idx_01, Shape::new([n, 1, spatial_out]));
200 let idx_10 = B::int_reshape(idx_10, Shape::new([n, 1, spatial_out]));
201 let idx_11 = B::int_reshape(idx_11, Shape::new([n, 1, spatial_out]));
202
203 let idx_00 = B::int_expand(idx_00, Shape::new([n, c, spatial_out]));
205 let idx_01 = B::int_expand(idx_01, Shape::new([n, c, spatial_out]));
206 let idx_10 = B::int_expand(idx_10, Shape::new([n, c, spatial_out]));
207 let idx_11 = B::int_expand(idx_11, Shape::new([n, c, spatial_out]));
208
209 let tensor_flat = B::float_reshape(tensor, Shape::new([n, c, spatial_in]));
210
211 let sample_00 = B::float_gather(2, tensor_flat.clone(), idx_00);
212 let sample_01 = B::float_gather(2, tensor_flat.clone(), idx_01);
213 let sample_10 = B::float_gather(2, tensor_flat.clone(), idx_10);
214 let sample_11 = B::float_gather(2, tensor_flat, idx_11);
215
216 let sample_00 = B::float_reshape(sample_00, Shape::new([n, c, h_out, w_out]));
218 let sample_01 = B::float_reshape(sample_01, Shape::new([n, c, h_out, w_out]));
219 let sample_10 = B::float_reshape(sample_10, Shape::new([n, c, h_out, w_out]));
220 let sample_11 = B::float_reshape(sample_11, Shape::new([n, c, h_out, w_out]));
221
222 let (sample_00, sample_01, sample_10, sample_11) =
224 if padding_mode == GridSamplePaddingMode::Zeros {
225 let mask_00 = mask_00.unwrap();
226 let mask_01 = mask_01.unwrap();
227 let mask_10 = mask_10.unwrap();
228 let mask_11 = mask_11.unwrap();
229
230 let mask_00_inv = B::bool_not(mask_00);
231 let mask_00_inv = B::bool_reshape(mask_00_inv, Shape::new([n, 1, h_out, w_out]));
232 let mask_00_inv = B::bool_expand(mask_00_inv, Shape::new([n, c, h_out, w_out]));
233 let mask_01_inv = B::bool_not(mask_01);
234 let mask_01_inv = B::bool_reshape(mask_01_inv, Shape::new([n, 1, h_out, w_out]));
235 let mask_01_inv = B::bool_expand(mask_01_inv, Shape::new([n, c, h_out, w_out]));
236 let mask_10_inv = B::bool_not(mask_10);
237 let mask_10_inv = B::bool_reshape(mask_10_inv, Shape::new([n, 1, h_out, w_out]));
238 let mask_10_inv = B::bool_expand(mask_10_inv, Shape::new([n, c, h_out, w_out]));
239 let mask_11_inv = B::bool_not(mask_11);
240 let mask_11_inv = B::bool_reshape(mask_11_inv, Shape::new([n, 1, h_out, w_out]));
241 let mask_11_inv = B::bool_expand(mask_11_inv, Shape::new([n, c, h_out, w_out]));
242
243 (
244 B::float_mask_fill(sample_00, mask_00_inv, 0.0f32.elem()),
245 B::float_mask_fill(sample_01, mask_01_inv, 0.0f32.elem()),
246 B::float_mask_fill(sample_10, mask_10_inv, 0.0f32.elem()),
247 B::float_mask_fill(sample_11, mask_11_inv, 0.0f32.elem()),
248 )
249 } else {
250 (sample_00, sample_01, sample_10, sample_11)
251 };
252
253 let one_minus_x = B::float_neg(x_frac.clone());
255 let one_minus_x = B::float_add_scalar(one_minus_x, 1.0f32.elem());
256
257 let one_minus_y = B::float_neg(y_frac.clone());
258 let one_minus_y = B::float_add_scalar(one_minus_y, 1.0f32.elem());
259
260 let weight_00 = B::float_mul(one_minus_x.clone(), one_minus_y.clone());
261 let weight_01 = B::float_mul(one_minus_x.clone(), y_frac.clone());
262 let weight_10 = B::float_mul(x_frac.clone(), one_minus_y);
263 let weight_11 = B::float_mul(x_frac, y_frac);
264
265 let result = B::float_mul(sample_00, weight_00);
267 let result = B::float_add(result, B::float_mul(sample_01, weight_01));
268 let result = B::float_add(result, B::float_mul(sample_10, weight_10));
269
270 B::float_add(result, B::float_mul(sample_11, weight_11))
271}
272
273fn reflect_coordinates<B: Backend>(
278 coords: FloatTensor<B>,
279 size: f64,
280 align_corners: bool,
281) -> FloatTensor<B> {
282 let (min_val, max_val) = if align_corners {
283 (0.0f32, (size - 1.0) as f32)
284 } else {
285 (-0.5f32, (size - 0.5) as f32)
286 };
287
288 let span = max_val - min_val;
289 if span <= 0.0 {
290 let zeros = B::float_mul_scalar(coords, 0.0f32.elem());
292 return B::float_add_scalar(zeros, min_val.elem());
293 }
294
295 let period = 2.0 * span;
297
298 let x = B::float_sub_scalar(coords, min_val.elem());
300 let x = B::float_abs(x);
301
302 let x_div = B::float_div_scalar(x.clone(), period.elem());
304 let x_div_floor = B::float_floor(x_div);
305 let x_mod = B::float_sub(x, B::float_mul_scalar(x_div_floor, period.elem()));
306
307 let diff = B::float_sub_scalar(x_mod, span.elem());
309 let abs_diff = B::float_abs(diff);
310 let reflected = B::float_sub_scalar(abs_diff, span.elem());
311 let reflected = B::float_neg(reflected);
312 B::float_add_scalar(reflected, min_val.elem())
313}