1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
use core::{
num::NonZeroUsize,
ptr::{self, NonNull},
};
use crate::{polyfill::pointer, SizedTypeProperties};
// Putting the expression in a function helps llvm to realize that it can initialize the value
// at this pointer instead of allocating it on the stack and then copying it over.
#[inline(always)]
pub(crate) unsafe fn write_with<T>(ptr: NonNull<T>, f: impl FnOnce() -> T) {
ptr::write(ptr.as_ptr(), f());
}
/// See `pointer::add` for semantics and safety requirements.
#[inline(always)]
pub(crate) unsafe fn add<T>(ptr: NonNull<T>, delta: usize) -> NonNull<T>
where
T: Sized,
{
// SAFETY: We require that the delta stays in-bounds of the object, and
// thus it cannot become null, as that would require wrapping the
// address space, which no legal objects are allowed to do.
// And the caller promised the `delta` is sound to add.
NonNull::new_unchecked(ptr.as_ptr().add(delta))
}
/// See `pointer::sub` for semantics and safety requirements.
#[inline(always)]
pub(crate) unsafe fn sub<T>(ptr: NonNull<T>, delta: usize) -> NonNull<T>
where
T: Sized,
{
// SAFETY: We require that the delta stays in-bounds of the object, and
// thus it cannot become null, as no legal objects can be allocated
// in such as way that the null address is part of them.
// And the caller promised the `delta` is sound to subtract.
NonNull::new_unchecked(ptr.as_ptr().sub(delta))
}
/// Calculates the offset from a pointer in bytes (convenience for `.byte_offset(count as isize)`).
///
/// `count` is in units of bytes.
///
/// This is purely a convenience for casting to a `u8` pointer and
/// using [`add`] on it. See that method for documentation
/// and safety requirements.
///
/// For non-`Sized` pointees this operation changes only the data pointer,
/// leaving the metadata untouched.
#[must_use]
#[inline(always)]
#[allow(dead_code)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub(crate) unsafe fn byte_add<T>(ptr: NonNull<T>, count: usize) -> NonNull<T> {
add(ptr.cast::<u8>(), count).cast()
}
/// Calculates the offset from a pointer in bytes (convenience for
/// `.byte_offset((count as isize).wrapping_neg())`).
///
/// `count` is in units of bytes.
///
/// This is purely a convenience for casting to a `u8` pointer and
/// using [`sub`] on it. See that method for documentation
/// and safety requirements.
///
/// For non-`Sized` pointees this operation changes only the data pointer,
/// leaving the metadata untouched.
#[must_use]
#[inline(always)]
#[allow(dead_code)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub(crate) unsafe fn byte_sub<T>(ptr: NonNull<T>, count: usize) -> NonNull<T> {
sub(ptr.cast::<u8>(), count).cast()
}
// Must not overflow
#[inline(always)]
pub(crate) unsafe fn wrapping_byte_add<T>(ptr: NonNull<T>, count: usize) -> NonNull<T> {
NonNull::new_unchecked(ptr.as_ptr().cast::<u8>().wrapping_add(count).cast())
}
// Must not overflow.
#[inline(always)]
pub(crate) unsafe fn wrapping_byte_sub<T>(ptr: NonNull<T>, count: usize) -> NonNull<T> {
NonNull::new_unchecked(ptr.as_ptr().cast::<u8>().wrapping_sub(count).cast())
}
/// Gets the "address" portion of the pointer.
///
/// For more details see the equivalent method on a raw pointer, `pointer::addr`.
///
/// This API and its claimed semantics are part of the Strict Provenance experiment,
/// see the [`ptr` module documentation][core::ptr].
#[inline(always)]
pub(crate) fn addr<T>(ptr: NonNull<T>) -> NonZeroUsize {
// SAFETY: The pointer is guaranteed by the type to be non-null,
// meaning that the address will be non-zero.
unsafe { NonZeroUsize::new_unchecked(sptr::Strict::addr(ptr.as_ptr())) }
}
/// Creates a new pointer with the given address.
///
/// For more details see the equivalent method on a raw pointer, `pointer::with_addr`.
///
/// This API and its claimed semantics are part of the Strict Provenance experiment,
/// see the [`ptr` module documentation][core::ptr].
#[must_use]
#[inline(always)]
pub(crate) fn with_addr<T>(ptr: NonNull<T>, addr: NonZeroUsize) -> NonNull<T> {
// SAFETY: The result of `ptr::from::with_addr` is non-null because `addr` is guaranteed to be non-zero.
unsafe { NonNull::new_unchecked(sptr::Strict::with_addr(ptr.as_ptr(), addr.get())) }
}
/// Calculates the distance between two pointers, *where it's known that
/// `self` is equal to or greater than `origin`*. The returned value is in
/// units of T: the distance in bytes is divided by `mem::size_of::<T>()`.
///
/// This computes the same value that [`offset_from`](#method.offset_from)
/// would compute, but with the added precondition that the offset is
/// guaranteed to be non-negative. This method is equivalent to
/// `usize::try_from(self.offset_from(origin)).unwrap_unchecked()`,
/// but it provides slightly more information to the optimizer, which can
/// sometimes allow it to optimize slightly better with some backends.
///
/// This method can be though of as recovering the `count` that was passed
/// to [`add`](#method.add) (or, with the parameters in the other order,
/// to [`sub`](#method.sub)). The following are all equivalent, assuming
/// that their safety preconditions are met:
/// ```
/// # #![feature(ptr_sub_ptr)]
/// # unsafe fn blah(ptr: *mut i32, origin: *mut i32, count: usize) -> bool {
/// ptr.sub_ptr(origin) == count
/// # &&
/// origin.add(count) == ptr
/// # &&
/// ptr.sub(count) == origin
/// # }
/// ```
///
/// # Safety
///
/// - The distance between the pointers must be non-negative (`self >= origin`)
///
/// - *All* the safety conditions of [`offset_from`](#method.offset_from)
/// apply to this method as well; see it for the full details.
///
/// Importantly, despite the return type of this method being able to represent
/// a larger offset, it's still *not permitted* to pass pointers which differ
/// by more than `isize::MAX` *bytes*. As such, the result of this method will
/// always be less than or equal to `isize::MAX as usize`.
///
/// # Panics
///
/// This function panics if `T` is a Zero-Sized Type ("ZST").
///
/// # Examples
///
/// ```
/// #![feature(ptr_sub_ptr)]
///
/// let mut a = [0; 5];
/// let p: *mut i32 = a.as_mut_ptr();
/// unsafe {
/// let ptr1: *mut i32 = p.add(1);
/// let ptr2: *mut i32 = p.add(3);
///
/// assert_eq!(ptr2.sub_ptr(ptr1), 2);
/// assert_eq!(ptr1.add(2), ptr2);
/// assert_eq!(ptr2.sub(2), ptr1);
/// assert_eq!(ptr2.sub_ptr(ptr2), 0);
/// }
///
/// // This would be incorrect, as the pointers are not correctly ordered:
/// // ptr1.offset_from(ptr2)
#[must_use]
#[inline(always)]
pub(crate) unsafe fn sub_ptr<T>(lhs: NonNull<T>, rhs: NonNull<T>) -> usize {
debug_assert!((addr(lhs).get() - addr(rhs).get()) % T::SIZE == 0);
pointer::sub_ptr(lhs.as_ptr(), rhs.as_ptr())
}
#[must_use]
#[inline(always)]
pub(crate) unsafe fn byte_sub_ptr<T>(lhs: NonNull<T>, rhs: NonNull<T>) -> usize {
sub_ptr::<u8>(lhs.cast(), rhs.cast())
}
/// Creates a non-null raw slice from a thin pointer and a length.
///
/// The `len` argument is the number of **elements**, not the number of bytes.
///
/// This function is safe, but dereferencing the return value is unsafe.
/// See the documentation of [`slice::from_raw_parts`](core::slice::from_raw_parts) for slice safety requirements.
#[must_use]
#[inline(always)]
pub(crate) const fn slice_from_raw_parts<T>(data: NonNull<T>, len: usize) -> NonNull<[T]> {
// SAFETY: `data` is a `NonNull` pointer which is necessarily non-null
unsafe { NonNull::new_unchecked(pointer::cast_mut(ptr::slice_from_raw_parts(data.as_ptr(), len))) }
}
/// See [`ptr::copy`] for semantics and safety requirements.
#[inline(always)]
pub(crate) unsafe fn copy<T>(src: NonNull<T>, dst: NonNull<T>, count: usize) {
ptr::copy(src.as_ptr(), dst.as_ptr(), count);
}
/// See [`ptr::copy_nonoverlapping`] for semantics and safety requirements.
#[inline(always)]
pub(crate) unsafe fn copy_nonoverlapping<T>(src: NonNull<T>, dst: NonNull<T>, count: usize) {
ptr::copy_nonoverlapping(src.as_ptr(), dst.as_ptr(), count);
}
#[inline(always)]
pub(crate) unsafe fn result<T, E>(mut ptr: NonNull<Result<T, E>>) -> Result<NonNull<T>, NonNull<E>> {
match ptr.as_mut() {
Ok(ok) => Ok(ok.into()),
Err(err) => Err(err.into()),
}
}
#[inline(always)]
pub(crate) fn is_aligned_to(ptr: NonNull<u8>, align: usize) -> bool {
debug_assert!(align.is_power_of_two());
addr(ptr).get() & (align - 1) == 0
}
#[inline(always)]
pub(crate) fn as_non_null_ptr<T>(ptr: NonNull<[T]>) -> NonNull<T> {
ptr.cast()
}
#[inline(always)]
pub(crate) fn set_len<T>(ptr: &mut NonNull<[T]>, new_len: usize) {
let elem_ptr = as_non_null_ptr(*ptr);
*ptr = slice_from_raw_parts(elem_ptr, new_len);
}
#[inline(always)]
pub(crate) unsafe fn drop_in_place<T: ?Sized>(ptr: NonNull<T>) {
ptr.as_ptr().drop_in_place();
}
/// # Safety
///
/// `ptr` must point to a valid slice.
pub(crate) unsafe fn truncate<T>(slice: &mut NonNull<[T]>, len: usize) {
// This is safe because:
//
// * the slice passed to `drop_in_place` is valid; the `len > self.len`
// case avoids creating an invalid slice, and
// * the `len` of the slice is shrunk before calling `drop_in_place`,
// such that no value will be dropped twice in case `drop_in_place`
// were to panic once (if it panics twice, the program aborts).
// Unlike std this is `>=`. Std uses `>` because when a call is inlined with `len` of `0` that optimizes better.
// But this was likely only motivated because `clear` used to be implemented as `truncate(0)`.
// See <https://github.com/rust-lang/rust/issues/76089#issuecomment-1889416842>.
if len >= slice.len() {
return;
}
let remaining_len = slice.len() - len;
let to_drop_start = add(as_non_null_ptr(*slice), len);
let to_drop = slice_from_raw_parts(to_drop_start, remaining_len);
set_len::<T>(slice, len);
drop_in_place(to_drop);
}
#[allow(unused_macros)]
macro_rules! addr_of {
($ptr:ident.$member:ident) => {{
NonNull::new_unchecked(core::ptr::addr_of_mut!((*$ptr.as_ptr()).$member))
}};
}
#[allow(unused_imports)]
pub(crate) use addr_of;
/// like `<NonNull<T> as From<&T>>::from` but `const`
pub(crate) const fn from_ref<T>(r: &T) -> NonNull<T> {
unsafe { NonNull::new_unchecked(r as *const T as *mut T) }
}