Expand description
This crate contains Recursive & Iterative Binary Search Tree Implementations. All common operations are included along with common traversal iterators.
All elements within the Binary Search Trees must implement the Ord trait.
It is also important to note that RecursiveBST is more likely to blow the stack.
For more information on why that is the case, please have a look at
The Story of Tail Call Optimizations in Rust.
§Author Notes
I have made this library with the personal goals of learning and solidifying concepts such as ownership, borrowing, generics and lifetimes. I cannot promise that the implementations are particularly efficient, or if they are, it was not at the forefront of my mind.
That being said, there are some areas I would love to improve upon/include:
- Write idiomatic code.
- Effectively use macro_rules! to reduce large portions of repetitive code.
- Implement a pretty_print() function to display the binary search trees nicely.
- Implement Drop trait for iterative node cleanup.
- Pre-allocate space on the heap for nodes to reduce inefficiency of inserts.
I’m more than happy to accept (and encourage) contributions if anyone is kind enough to do so.
§Quick Start
use bst_rs::{BinarySearchTree, IterativeBST, RecursiveBST};
// Create new empty binary search trees
let mut iterative_bst = IterativeBST::new();
assert!(iterative_bst.is_empty());
let mut recursive_bst = RecursiveBST::new();
assert!(recursive_bst.is_empty());
// Insert elements (no duplicates are allowed)
iterative_bst.insert(10);
iterative_bst.insert(10); // Element is not inserted
iterative_bst.insert(5);
iterative_bst.insert(2);
iterative_bst.insert(15);
iterative_bst.insert(25);
assert_eq!(iterative_bst.size(), 5);
recursive_bst.insert(10);
recursive_bst.insert(10); // Element is not inserted
recursive_bst.insert(5);
recursive_bst.insert(2);
recursive_bst.insert(15);
recursive_bst.insert(25);
assert_eq!(recursive_bst.size(), 5);
// Check if element exists
assert!(iterative_bst.contains(&5)); // true
assert!(!iterative_bst.contains(&0)); // false
assert!(recursive_bst.contains(&5)); // true
assert!(!recursive_bst.contains(&0)); // false
// Remove elements
iterative_bst.remove(&10);
iterative_bst.remove(&50); // No change to tree as element does not exist
assert_eq!(iterative_bst.size(), 4);
recursive_bst.remove(&10);
recursive_bst.remove(&50); // No change to tree as element does not exist
assert_eq!(recursive_bst.size(), 4);
// View pre-order, in-order, post-order and level-order traversals
assert_eq!(iterative_bst.pre_order_vec(), vec![&15, &5, &2, &25]);
assert_eq!(iterative_bst.in_order_vec(), vec![&2, &5, &15, &25]);
assert_eq!(iterative_bst.post_order_vec(), vec![&2, &5, &25, &15]);
assert_eq!(iterative_bst.level_order_vec(), vec![&15, &5, &25, &2]);
assert_eq!(recursive_bst.pre_order_vec(), vec![&15, &5, &2, &25]);
assert_eq!(recursive_bst.in_order_vec(), vec![&2, &5, &15, &25]);
assert_eq!(recursive_bst.post_order_vec(), vec![&2, &5, &25, &15]);
assert_eq!(recursive_bst.level_order_vec(), vec![&15, &5, &25, &2]);
// Compare equality/in-equality of trees
assert_eq!(iterative_bst.asc_order_vec(), recursive_bst.asc_order_vec());
assert_ne!(iterative_bst, IterativeBST::new());
assert_ne!(recursive_bst, RecursiveBST::new());
Structs§
- IterativeBST
- Iterative Binary Search Tree implementation.
- RecursiveBST
- Recursive Binary Search Tree implementation.
Traits§
- Binary
Search Tree - A trait containing all the common operations of Binary Search Trees.