1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
//! This module contains runtime and application related handles.
//!
//! _Browser Window_ needs to be initialized, and also run its own runtime.
//! Once that is set up and running, all windows can be constructed and be used.
//! To do this, use `Application::initialize`.
//! Then you will have an `Application` instance, from which you can derive a
//! `Runtime` instance. Running the `Runtime` will grant you access to an
//! `ApplicationHandle` which you use to manipulate your application with.
//!
//! # Example #1
//! Here is an example to show how you can construct your application:
//! ```
//! use std::process;
//!
//! use browser_window::application::*;
//!
//! fn main() {
//! let application = Application::initialize(&ApplicationSettings::default()).unwrap();
//! let runtime = application.start();
//!
//! let exit_code = runtime.run_async(|handle| async move {
//! // Do something ...
//!
//! // Not normally needed:
//! handle.exit(0);
//! });
//!
//! process::exit(exit_code);
//! }
//! ```
#![cfg_attr(
not(feature = "threadsafe"),
doc = r#"
_Browser Window_ also supports manipulating the GUI from other threads with thread-safe handles.
To use these, enable the `threadsafe` feature.
"#
)]
# for example, its still possible to use _Browser Window_ in conjunction with that.
However, you will need to enable feature `threadsafe`, as it will enable all threadsafe handles.
Here is an example:
```rust
use std::process;
use browser_window::application::*;
use tokio;
async fn async_main( app: ApplicationHandleThreaded ) {
// Do something ...
app.exit(0);
}
fn main() {
let application = Application::initialize( &ApplicationSettings::default() ).unwrap();
let bw_runtime = application.start();
let tokio_runtime = tokio::runtime::Runtime::new().unwrap();
// First run our own runtime on the main thread
let exit_code = bw_runtime.run(|_app| {
let app = _app.into_threaded();
// Spawn the main logic into the tokio runtime
tokio_runtime.spawn( async_main( app ) );
});
process::exit(exit_code);
}
```"#
)]
#[cfg(feature = "threadsafe")]
use std::ops::Deref;
use std::{
env,
ffi::CString,
future::Future,
os::raw::c_int,
path::PathBuf,
pin::Pin,
ptr,
task::{Context, Poll, RawWaker, RawWakerVTable, Waker},
time::Duration,
};
use futures_channel::oneshot;
use lazy_static::lazy_static;
#[cfg(feature = "threadsafe")]
use crate::delegate::*;
use crate::{cookie::CookieJar, core::application::*, error};
/// Use this to initialize and start your application with.
pub struct Application {
pub(super) handle: ApplicationHandle,
}
/// *Note:* Only available with feature `threadsafe` enabled.
///
/// A thread-safe application handle.
/// This handle also allows you to dispatch code to be executed on the GUI
/// thread from any other thread.
#[cfg(feature = "threadsafe")]
#[derive(Clone)]
pub struct ApplicationHandleThreaded {
pub(super) handle: ApplicationHandle,
}
#[cfg(feature = "threadsafe")]
unsafe impl Send for ApplicationHandleThreaded {}
#[cfg(feature = "threadsafe")]
unsafe impl Sync for ApplicationHandleThreaded {}
#[derive(Clone)]
/// A thread-unsafe application handle.
/// Often provided by for Browser Window.
pub struct ApplicationHandle {
pub(super) inner: ApplicationImpl,
}
struct ApplicationDispatchData<'a> {
handle: ApplicationHandle,
func: Box<dyn FnOnce(&ApplicationHandle) + 'a>,
}
#[cfg(feature = "threadsafe")]
struct ApplicationDispatchSendData<'a> {
handle: ApplicationHandle,
func: Box<dyn FnOnce(&ApplicationHandle) + Send + 'a>,
}
#[derive(Default)]
pub struct ApplicationSettings {
/// CEF only: If set, the path of the seperate executable that gets compiled
/// together with your main executable. If not set, no seperate executable
/// will be used.
pub engine_seperate_executable_path: Option<PathBuf>,
/// If set, this path will be where the browser framework will look for
/// resources/assets. If not set, it will default to the directory where the
/// executable is located.
pub resource_dir: Option<PathBuf>,
/// CEF only: If set, will enable remote debugging at this port.
pub remote_debugging_port: Option<u16>,
}
// The trait to be implemented by all (user-level) handles that are able to
// return an ApplicationHandle. Like: Application, ApplicationAsync,
// BrowserWindow, BrowserWindowAsync
pub trait HasAppHandle {
fn app_handle(&self) -> &ApplicationHandle;
}
/// The runtime to run the application with.
///
/// This runtime will run until all windows have been closed _and_ the (async)
/// closure given to the `run*` functions have ended.
pub struct Runtime {
pub(super) handle: ApplicationHandle,
}
/// The data that is available to a waker, allowing it to poll a future.
struct WakerData<'a> {
handle: ApplicationHandle,
future: Pin<Box<dyn Future<Output = ()> + 'a>>,
}
/// The future that dispatches a closure onto the GUI thread
#[cfg(feature = "threadsafe")]
pub type ApplicationDelegateFuture<'a, R> =
DelegateFuture<'a, ApplicationHandle, ApplicationHandle, R>;
lazy_static! {
static ref WAKER_VTABLE: RawWakerVTable =
RawWakerVTable::new(waker_clone, waker_wake, waker_wake_by_ref, waker_drop);
}
impl Application {
/// Prepares the os args as a vector of C compatible pointers.
fn args_ptr_vec() -> (Vec<CString>, Vec<*mut u8>) {
let args = env::args_os();
let mut vec = Vec::with_capacity(args.len());
let mut vec_ptrs = Vec::with_capacity(args.len());
for arg in args {
let string = CString::new(arg.to_string_lossy().to_string())
.expect("Unable to convert OsString into CString!");
vec_ptrs.push(string.as_ptr() as _);
vec.push(string);
}
(vec, vec_ptrs)
}
/// Shuts down other processes and performs any necessary clean-up code.
/// This is useful if you main function doesn't exit naturally.
/// If you call `std::process::exit`, the variables currently available
/// don't get dropped. This is problematic because Browser Window needs to
/// shut down properly. Call this if you are using `exit` or doing something
/// else to kill the process.
pub fn finish(self) {}
/// In order to use the Browser Window API, you need to initialize Browser
/// Window at the very start of your application. Preferably on the first
/// line of your `main` function.
///
/// # Warning
/// This will open another process of your application.
/// Therefore, any code that will be placed before initialization will also
/// be executed on all other processes. This is generally unnecessary.
///
/// # Arguments
/// `settings` - Some settings that allow you to tweak some application
/// behaviors. Use `Settings::default()` for default settings
/// that work for most people.
pub fn initialize(settings: &ApplicationSettings) -> error::Result<Application> {
let (args_vec, mut ptrs_vec) = Self::args_ptr_vec();
let argc: c_int = args_vec.len() as _;
let argv = ptrs_vec.as_mut_ptr();
let core_handle = ApplicationImpl::initialize(argc, argv as _, settings)?;
Ok(Application::from_core_handle(core_handle))
}
/// Creates a `Runtime` from which you can run the application.
pub fn start(&self) -> Runtime {
Runtime {
handle: unsafe { self.handle.clone() },
}
}
}
impl Drop for Application {
fn drop(&mut self) { self.handle.inner.free() }
}
impl ApplicationSettings {
pub fn default_resource_path() -> PathBuf {
let mut path = env::current_exe().unwrap();
path.pop();
#[cfg(debug_assertions)]
{
path.pop();
path.pop();
}
path.push("resources");
path
}
}
impl Runtime {
/// Polls a future given a pointer to the waker data.
fn poll_future(data: *mut WakerData) {
debug_assert!(data != ptr::null_mut(), "WakerData pointer can't be zero!");
// TODO: Test if polling from the right thread
let waker = Self::new_waker(data);
let mut ctx = Context::from_waker(&waker);
let result = unsafe { (*data).future.as_mut().poll(&mut ctx) };
// When the future is ready, free the memory allocated for the waker data
match result {
Poll::Ready(_) => {
let _ = unsafe { Box::from_raw(data) };
}
Poll::Pending => {}
}
}
/// Constructs a `Waker` for our runtime
fn new_waker(data: *mut WakerData) -> Waker {
debug_assert!(data != ptr::null_mut(), "WakerData pointer can't be zero!");
unsafe { Waker::from_raw(RawWaker::new(data as _, &WAKER_VTABLE)) }
}
/// Run the main loop and executes the given closure on it.
///
/// # Arguments
/// * `on_ready` - This closure will be called when the runtime has
/// initialized, and will provide the caller with an application handle.
///
/// # Reserved Codes
/// -1 is used as the return code for when the main thread panicked during a
/// delegated closure.
pub fn run<H>(&self, on_ready: H) -> i32
where
H: FnOnce(ApplicationHandle),
{
return self._run(|handle| {
let result = on_ready(unsafe { handle.clone() });
handle.inner.mark_as_done();
result
});
}
/// Runs the main loop and executes the given future within that loop.
/// This function exits when the future finishes or when `exit` is called.
///
/// Keep in mind that calls to async functions or futures may not
/// necessarily finish. Exiting the application causes the runtime to stop,
/// and it doesn't necessarily complete all waiting tasks.
///
/// # Reserved Codes
/// The same reserved codes apply as `run`.
pub fn run_async<'a, C, F>(&'a self, func: C) -> i32
where
C: FnOnce(ApplicationHandle) -> F + 'a,
F: Future<Output = ()> + 'a,
{
self._run(|handle| {
self.spawn(async move {
func(unsafe { handle.clone() }).await;
handle.inner.mark_as_done();
});
})
}
/// Use `run_async` instead.
pub fn spawn<'a, F>(&'a self, future: F)
where
F: Future<Output = ()> + 'a,
{
// Data for the waker.
let waker_data = Box::into_raw(Box::new(WakerData {
handle: unsafe { self.handle.clone() },
future: Box::pin(future),
}));
// First poll
Runtime::poll_future(waker_data);
}
fn _run<'a, H>(&self, on_ready: H) -> i32
where
H: FnOnce(ApplicationHandle) + 'a,
{
let ready_data = Box::into_raw(Box::new(on_ready));
self.handle.inner.run(ready_handler::<H>, ready_data as _)
}
}
impl Application {
/// Constructs an `Application` from a ffi handle
pub(super) fn from_core_handle(inner: ApplicationImpl) -> Self {
Self {
handle: ApplicationHandle::new(inner),
}
}
}
impl From<ApplicationHandle> for Application {
fn from(other: ApplicationHandle) -> Self { Self { handle: other } }
}
impl ApplicationHandle {
/// Returns an instance of a `CookieJar`, if the underlying browser
/// framework supports it. Currently, only CEF supports cookies.
pub fn cookie_jar(&self) -> Option<CookieJar> { CookieJar::global() }
pub(crate) unsafe fn clone(&self) -> Self {
Self {
inner: self.inner.clone(),
}
}
/// Causes the `Runtime` to terminate.
/// The `Runtime`'s [`Runtime::run`] or spawn command will return the exit
/// code provided. This will mean that not all tasks might complete.
/// If you were awaiting
pub fn exit(&self, exit_code: i32) { self.inner.exit(exit_code as _); }
pub(super) fn new(inner: ApplicationImpl) -> Self { Self { inner } }
/// **Note:** Only available with feature `threadsafe` enabled.
///
/// Transforms this application handle into a thread-safe version of it.
#[cfg(feature = "threadsafe")]
pub fn into_threaded(self) -> ApplicationHandleThreaded { self.into() }
/// Spawns the given future, executing it on the GUI thread somewhere in the
/// near future.
pub fn spawn<F>(&self, future: F)
where
F: Future<Output = ()> + 'static,
{
// Data for the waker.
let waker_data = Box::into_raw(Box::new(WakerData {
handle: unsafe { self.clone() },
future: Box::pin(future),
}));
// First poll
Runtime::poll_future(waker_data);
}
/// Queues the given closure `func` to be executed on the GUI thread
/// somewhere in the future, at least after the given delay. The closure
/// will only execute when and if the runtime is still running.
/// Returns whether or not the closure will be able to execute.
pub fn dispatch_delayed<'a, F>(&self, func: F, delay: Duration) -> bool
where
F: FnOnce(&ApplicationHandle) + 'a,
{
let data_ptr = Box::into_raw(Box::new(ApplicationDispatchData {
handle: unsafe { self.app_handle().clone() },
func: Box::new(func),
}));
self.inner
.dispatch_delayed(dispatch_handler, data_ptr as _, delay)
}
/// Will wait the given `duration` before returning execution back to the
/// caller. This does not put the current thread in a sleeping state, it
/// just waits.
pub async fn sleep(&self, duration: Duration) {
let (tx, rx) = oneshot::channel::<()>();
self.dispatch_delayed(
|_handle| {
if let Err(_) = tx.send(()) {
panic!("unable to send signal back to sleeping function");
}
},
duration,
);
rx.await.unwrap();
}
}
#[cfg(feature = "threadsafe")]
impl ApplicationHandleThreaded {
/// Executes the given closure `func` on the GUI thread, and gives back the
/// result when done. This only works when the runtime is still running.
/// If the closure panicked, or the runtime is not running, this will return
/// an error.
///
/// The function signature is practically the same as:
/// ```ignore
/// pub async fn delegate<'a,F,R>( &self, func: F ) -> Result<R, DelegateError> where
/// F: FnOnce( ApplicationHandle ) -> R + Send + 'a,
/// R: Send { /* ... */ }
/// ```
///
/// Keep in mind that in multi-threaded environments, it is generally a good
/// idea to put the output on the heap. The output value _will_ be copied.
///
/// # Example
/// ```ignore
/// let my_value: String = app.delegate(|handle| {
/// "string".to_owned()
/// }).unwrap();
/// ```
pub fn delegate<'a, F, R>(&self, func: F) -> ApplicationDelegateFuture<'a, R>
where
F: FnOnce(&ApplicationHandle) -> R + Send + 'a,
R: Send,
{
ApplicationDelegateFuture::<'a, R>::new(unsafe { self.handle.clone() }, |h| func(h))
}
/// Executes the given `future` on the GUI thread, and gives back its output
/// when done. This only works when the runtime is still running.
/// If the future panicked during a poll, or the runtime is not running,
/// this will return an error. See also `delegate`.
///
/// The function signature is practically the same as:
/// ```ignore
/// pub async fn delegate_future<'a,F,R>( &self, func: F ) -> Result<R, DelegateError> where
/// F: Future<Output=R> + 'static,
/// R: Send { /* ... */ }
/// ```
///
/// # Example
/// ```ignore
/// let my_value: String = app.delegate_future(async {
/// "string".to_owned()
/// }).unwrap();
/// ```
pub fn delegate_future<F, R>(&self, future: F) -> DelegateFutureFuture<R>
where
F: Future<Output = R> + 'static,
R: Send + 'static,
{
DelegateFutureFuture::new(unsafe { self.handle.clone() }, future)
}
/// Executes the given async closure `func` on the GUI thread, and gives
/// back the result when done. This only works when the runtime is still
/// running. If the closure panicked, or the runtime is not running, this
/// will return an error.
///
/// Except, async closures are not yet supported in stable Rust.
/// What we actually mean are closures of the form:
/// ```ignore
/// |handle| async move { /* ... */ }
/// ```
///
/// The function signature is practically the same as:
/// ```ignore
/// pub async fn delegate_async<'a,C,F,R>( &self, func: C ) -> Result<R, DelegateError> where
/// C: FnOnce( ApplicationHandle ) -> F + Send + 'a,
/// F: Future<Output=R>,
/// R: Send + 'static
/// { /* ... */ }
/// ```
///
/// # Example
/// ```ignore
/// let my_value: String = app.delegate_async(|handle| async move {
/// "String".to_owned()
/// }).unwrap();
/// ```
pub fn delegate_async<'a, C, F, R>(&self, func: C) -> DelegateFutureFuture<'a, R>
where
C: FnOnce(ApplicationHandle) -> F + Send + 'a,
F: Future<Output = R>,
R: Send + 'static,
{
let handle = unsafe { self.handle.clone() };
DelegateFutureFuture::new(unsafe { self.handle.clone() }, async move {
func(handle.into()).await
})
}
/// Queues the given closure `func` to be executed on the GUI thread
/// somewhere in the future. The closure will only execute when and if the
/// runtime is still running. Returns whether or not the closure will be
/// able to execute.
pub fn dispatch<'a, F>(&self, func: F) -> bool
where
F: FnOnce(&ApplicationHandle) + Send + 'a,
{
let data_ptr = Box::into_raw(Box::new(ApplicationDispatchSendData {
handle: unsafe { self.handle.clone() },
func: Box::new(func),
}));
self.handle
.inner
.dispatch(dispatch_handler_send, data_ptr as _)
}
/// Queues the given closure `func` to be executed on the GUI thread
/// somewhere in the future, at least after the given delay. The closure
/// will only execute when and if the runtime is still running.
/// Returns whether or not the closure will be able to execute.
pub fn dispatch_delayed<'a, F>(&self, func: F, delay: Duration) -> bool
where
F: FnOnce(&ApplicationHandle) + Send + 'a,
{
let data_ptr = Box::into_raw(Box::new(ApplicationDispatchData {
handle: unsafe { self.handle.clone() },
func: Box::new(func),
}));
self.handle
.inner
.dispatch_delayed(dispatch_handler, data_ptr as _, delay)
}
/// Queues the given async closure `func` to be executed on the GUI thread
/// somewhere in the future. The closure will only execute when and if the
/// runtime is still running. However, there is no guarantee that the whole
/// closure will execute. The runtime might exit when the given closure is
/// at a point of waiting. Returns whether or not the closure will be able
/// to execute its first part.
pub fn dispatch_async<'a, C, F>(&self, func: C) -> bool
where
C: FnOnce(ApplicationHandle) -> F + Send + 'a,
F: Future<Output = ()> + 'static,
{
self.dispatch(|handle| {
let future = func(unsafe { handle.clone() });
handle.spawn(future);
})
}
/// Signals the runtime to exit.
/// This will cause `Runtime::run` to stop and return the provided exit
/// code.
pub fn exit(&self, exit_code: i32) {
// The thread-safe version of bw_Application_exit:
self.handle.inner.exit_threadsafe(exit_code as _);
}
/// Constructs an `ApplicationThreaded` handle from a ffi handle
pub(super) fn from_core_handle(inner: ApplicationImpl) -> Self {
Self {
handle: ApplicationHandle::new(inner),
}
}
/// Executes the given future on the GUI thread somewhere in the near
/// future.
pub fn spawn<F>(&self, future: F)
where
F: Future<Output = ()> + 'static,
{
self.handle.spawn(future);
}
}
#[cfg(feature = "threadsafe")]
impl From<ApplicationHandle> for ApplicationHandleThreaded {
fn from(other: ApplicationHandle) -> Self {
Self {
handle: unsafe { other.clone() },
}
}
}
#[cfg(feature = "threadsafe")]
impl Deref for ApplicationHandleThreaded {
type Target = ApplicationHandle;
fn deref(&self) -> &Self::Target { &self.handle }
}
impl HasAppHandle for ApplicationHandle {
fn app_handle(&self) -> &ApplicationHandle { &self }
}
fn dispatch_handler(_app: ApplicationImpl, _data: *mut ()) {
let data_ptr = _data as *mut ApplicationDispatchData<'static>;
let data = unsafe { Box::from_raw(data_ptr) };
(data.func)(&data.handle);
}
#[cfg(feature = "threadsafe")]
fn dispatch_handler_send(_app: ApplicationImpl, _data: *mut ()) {
let data_ptr = _data as *mut ApplicationDispatchSendData<'static>;
let data = unsafe { Box::from_raw(data_ptr) };
(data.func)(&data.handle);
}
/// The handler that is invoked when the runtime is deemed 'ready'.
fn ready_handler<H>(handle: ApplicationImpl, user_data: *mut ())
where
H: FnOnce(ApplicationHandle),
{
let app = ApplicationHandle::new(handle);
let closure = unsafe { Box::from_raw(user_data as *mut H) };
closure(app);
}
/// A handler that is invoked by wakers.
fn wakeup_handler(_app: ApplicationImpl, user_data: *mut ()) {
let data = user_data as *mut WakerData;
Runtime::poll_future(data);
}
unsafe fn waker_clone(data: *const ()) -> RawWaker { RawWaker::new(data, &WAKER_VTABLE) }
unsafe fn waker_wake(data: *const ()) {
let data_ptr = data as *const WakerData;
(*data_ptr)
.handle
.inner
.dispatch(wakeup_handler, data_ptr as _);
}
unsafe fn waker_wake_by_ref(data: *const ()) { waker_wake(data); }
fn waker_drop(_data: *const ()) {}