1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
//! This module contains runtime and application related handles.
//!
//! _Browser Window_ needs to be initialized, and also run its own runtime.
//! Once that is set up and running, all windows can be constructed and be used.
//! To do this, use `Application::initialize`.
//! Then you will have an `Application` instance, from which you can derive a
//! `Runtime` instance. Running the `Runtime` will grant you access to an
//! `ApplicationHandle` which you use to manipulate your application with.
//!
//! # Example #1
//! Here is an example to show how you can construct your application:
//! ```
//! use std::process;
//!
//! use browser_window::application::*;
//!
//! fn main() {
//! 	let application = Application::initialize(&ApplicationSettings::default()).unwrap();
//! 	let runtime = application.start();
//!
//! 	let exit_code = runtime.run_async(|handle| async move {
//! 		// Do something ...
//!
//! 		// Not normally needed:
//! 		handle.exit(0);
//! 	});
//!
//! 	process::exit(exit_code);
//! }
//! ```
#![cfg_attr(
	not(feature = "threadsafe"),
	doc = r#"
_Browser Window_ also supports manipulating the GUI from other threads with thread-safe handles.
To use these, enable the `threadsafe` feature.
"#
)]
#![cfg_attr(
	feature = "threadsafe",
	doc = r#"
# Example #2

If you want to run another kind of runtime, like [tokio](https://tokio.rs/) for example, its still possible to use _Browser Window_ in conjunction with that.
However, you will need to enable feature `threadsafe`, as it will enable all threadsafe handles.
Here is an example:

```rust
use std::process;
use browser_window::application::*;
use tokio;

async fn async_main( app: ApplicationHandleThreaded ) {
	// Do something ...

	app.exit(0);
}

fn main() {
	let application = Application::initialize( &ApplicationSettings::default() ).unwrap();
	let bw_runtime = application.start();

	let tokio_runtime = tokio::runtime::Runtime::new().unwrap();

	// First run our own runtime on the main thread
	let exit_code = bw_runtime.run(|_app| {
		let app = _app.into_threaded();

		// Spawn the main logic into the tokio runtime
		tokio_runtime.spawn( async_main( app ) );
	});

	process::exit(exit_code);
}
```"#
)]

#[cfg(feature = "threadsafe")]
use std::ops::Deref;
use std::{
	env,
	ffi::CString,
	future::Future,
	os::raw::c_int,
	path::PathBuf,
	pin::Pin,
	ptr,
	task::{Context, Poll, RawWaker, RawWakerVTable, Waker},
	time::Duration,
};

use futures_channel::oneshot;
use lazy_static::lazy_static;

#[cfg(feature = "threadsafe")]
use crate::delegate::*;
use crate::{cookie::CookieJar, core::application::*, error};

/// Use this to initialize and start your application with.
pub struct Application {
	pub(super) handle: ApplicationHandle,
}

/// *Note:* Only available with feature `threadsafe` enabled.
///
/// A thread-safe application handle.
/// This handle also allows you to dispatch code to be executed on the GUI
/// thread from any other thread.
#[cfg(feature = "threadsafe")]
#[derive(Clone)]
pub struct ApplicationHandleThreaded {
	pub(super) handle: ApplicationHandle,
}
#[cfg(feature = "threadsafe")]
unsafe impl Send for ApplicationHandleThreaded {}
#[cfg(feature = "threadsafe")]
unsafe impl Sync for ApplicationHandleThreaded {}

#[derive(Clone)]
/// A thread-unsafe application handle.
/// Often provided by for Browser Window.
pub struct ApplicationHandle {
	pub(super) inner: ApplicationImpl,
}

struct ApplicationDispatchData<'a> {
	handle: ApplicationHandle,
	func: Box<dyn FnOnce(&ApplicationHandle) + 'a>,
}

#[cfg(feature = "threadsafe")]
struct ApplicationDispatchSendData<'a> {
	handle: ApplicationHandle,
	func: Box<dyn FnOnce(&ApplicationHandle) + Send + 'a>,
}

#[derive(Default)]
pub struct ApplicationSettings {
	/// CEF only: If set, the path of the seperate executable that gets compiled
	/// together with your main executable. If not set, no seperate executable
	/// will be used.
	pub engine_seperate_executable_path: Option<PathBuf>,
	/// If set, this path will be where the browser framework will look for
	/// resources/assets. If not set, it will default to the directory where the
	/// executable is located.
	pub resource_dir: Option<PathBuf>,
	/// CEF only: If set, will enable remote debugging at this port.
	pub remote_debugging_port: Option<u16>,
}

// The trait to be implemented by all (user-level) handles that are able to
// return an ApplicationHandle. Like: Application, ApplicationAsync,
// BrowserWindow, BrowserWindowAsync
pub trait HasAppHandle {
	fn app_handle(&self) -> &ApplicationHandle;
}

/// The runtime to run the application with.
///
/// This runtime will run until all windows have been closed _and_ the (async)
/// closure given to the `run*` functions have ended.
pub struct Runtime {
	pub(super) handle: ApplicationHandle,
}

/// The data that is available to a waker, allowing it to poll a future.
struct WakerData<'a> {
	handle: ApplicationHandle,
	future: Pin<Box<dyn Future<Output = ()> + 'a>>,
}

/// The future that dispatches a closure onto the GUI thread
#[cfg(feature = "threadsafe")]
pub type ApplicationDelegateFuture<'a, R> =
	DelegateFuture<'a, ApplicationHandle, ApplicationHandle, R>;

lazy_static! {
	static ref WAKER_VTABLE: RawWakerVTable =
		RawWakerVTable::new(waker_clone, waker_wake, waker_wake_by_ref, waker_drop);
}

impl Application {
	/// Prepares the os args as a vector of C compatible pointers.
	fn args_ptr_vec() -> (Vec<CString>, Vec<*mut u8>) {
		let args = env::args_os();
		let mut vec = Vec::with_capacity(args.len());
		let mut vec_ptrs = Vec::with_capacity(args.len());

		for arg in args {
			let string = CString::new(arg.to_string_lossy().to_string())
				.expect("Unable to convert OsString into CString!");

			vec_ptrs.push(string.as_ptr() as _);

			vec.push(string);
		}

		(vec, vec_ptrs)
	}

	/// Shuts down other processes and performs any necessary clean-up code.
	/// This is useful if you main function doesn't exit naturally.
	/// If you call `std::process::exit`, the variables currently available
	/// don't get dropped. This is problematic because Browser Window needs to
	/// shut down properly. Call this if you are using `exit` or doing something
	/// else to kill the process.
	pub fn finish(self) {}

	/// In order to use the Browser Window API, you need to initialize Browser
	/// Window at the very start of your application. Preferably on the first
	/// line of your `main` function.
	///
	/// # Warning
	/// This will open another process of your application.
	/// Therefore, any code that will be placed before initialization will also
	/// be executed on all other processes. This is generally unnecessary.
	///
	/// # Arguments
	/// `settings` - Some settings that allow you to tweak some application
	/// behaviors.              Use `Settings::default()` for default settings
	/// that work for most people.
	pub fn initialize(settings: &ApplicationSettings) -> error::Result<Application> {
		let (args_vec, mut ptrs_vec) = Self::args_ptr_vec();
		let argc: c_int = args_vec.len() as _;
		let argv = ptrs_vec.as_mut_ptr();

		let core_handle = ApplicationImpl::initialize(argc, argv as _, settings)?;

		Ok(Application::from_core_handle(core_handle))
	}

	/// Creates a `Runtime` from which you can run the application.
	pub fn start(&self) -> Runtime {
		Runtime {
			handle: unsafe { self.handle.clone() },
		}
	}
}

impl Drop for Application {
	fn drop(&mut self) { self.handle.inner.free() }
}

impl ApplicationSettings {
	pub fn default_resource_path() -> PathBuf {
		let mut path = env::current_exe().unwrap();
		path.pop();

		#[cfg(debug_assertions)]
		{
			path.pop();
			path.pop();
		}

		path.push("resources");

		path
	}
}

impl Runtime {
	/// Polls a future given a pointer to the waker data.
	fn poll_future(data: *mut WakerData) {
		debug_assert!(data != ptr::null_mut(), "WakerData pointer can't be zero!");

		// TODO: Test if polling from the right thread

		let waker = Self::new_waker(data);
		let mut ctx = Context::from_waker(&waker);

		let result = unsafe { (*data).future.as_mut().poll(&mut ctx) };

		// When the future is ready, free the memory allocated for the waker data
		match result {
			Poll::Ready(_) => {
				let _ = unsafe { Box::from_raw(data) };
			}
			Poll::Pending => {}
		}
	}

	/// Constructs a `Waker` for our runtime
	fn new_waker(data: *mut WakerData) -> Waker {
		debug_assert!(data != ptr::null_mut(), "WakerData pointer can't be zero!");

		unsafe { Waker::from_raw(RawWaker::new(data as _, &WAKER_VTABLE)) }
	}

	/// Run the main loop and executes the given closure on it.
	///
	/// # Arguments
	/// * `on_ready` - This closure will be called when the runtime has
	///   initialized, and will provide the caller with an application handle.
	///
	/// # Reserved Codes
	/// -1 is used as the return code for when the main thread panicked during a
	/// delegated closure.
	pub fn run<H>(&self, on_ready: H) -> i32
	where
		H: FnOnce(ApplicationHandle),
	{
		return self._run(|handle| {
			let result = on_ready(unsafe { handle.clone() });
			handle.inner.mark_as_done();

			result
		});
	}

	/// Runs the main loop and executes the given future within that loop.
	/// This function exits when the future finishes or when `exit` is called.
	///
	/// Keep in mind that calls to async functions or futures may not
	/// necessarily finish. Exiting the application causes the runtime to stop,
	/// and it doesn't necessarily complete all waiting tasks.
	///
	/// # Reserved Codes
	/// The same reserved codes apply as `run`.
	pub fn run_async<'a, C, F>(&'a self, func: C) -> i32
	where
		C: FnOnce(ApplicationHandle) -> F + 'a,
		F: Future<Output = ()> + 'a,
	{
		self._run(|handle| {
			self.spawn(async move {
				func(unsafe { handle.clone() }).await;
				handle.inner.mark_as_done();
			});
		})
	}

	/// Use `run_async` instead.
	pub fn spawn<'a, F>(&'a self, future: F)
	where
		F: Future<Output = ()> + 'a,
	{
		// Data for the waker.
		let waker_data = Box::into_raw(Box::new(WakerData {
			handle: unsafe { self.handle.clone() },
			future: Box::pin(future),
		}));

		// First poll
		Runtime::poll_future(waker_data);
	}

	fn _run<'a, H>(&self, on_ready: H) -> i32
	where
		H: FnOnce(ApplicationHandle) + 'a,
	{
		let ready_data = Box::into_raw(Box::new(on_ready));

		self.handle.inner.run(ready_handler::<H>, ready_data as _)
	}
}

impl Application {
	/// Constructs an `Application` from a ffi handle
	pub(super) fn from_core_handle(inner: ApplicationImpl) -> Self {
		Self {
			handle: ApplicationHandle::new(inner),
		}
	}
}

impl From<ApplicationHandle> for Application {
	fn from(other: ApplicationHandle) -> Self { Self { handle: other } }
}

impl ApplicationHandle {
	/// Returns an instance of a `CookieJar`, if the underlying browser
	/// framework supports it. Currently, only CEF supports cookies.
	pub fn cookie_jar(&self) -> Option<CookieJar> { CookieJar::global() }

	pub(crate) unsafe fn clone(&self) -> Self {
		Self {
			inner: self.inner.clone(),
		}
	}

	/// Causes the `Runtime` to terminate.
	/// The `Runtime`'s [`Runtime::run`] or spawn command will return the exit
	/// code provided. This will mean that not all tasks might complete.
	/// If you were awaiting
	pub fn exit(&self, exit_code: i32) { self.inner.exit(exit_code as _); }

	pub(super) fn new(inner: ApplicationImpl) -> Self { Self { inner } }

	/// **Note:** Only available with feature `threadsafe` enabled.
	///
	/// Transforms this application handle into a thread-safe version of it.
	#[cfg(feature = "threadsafe")]
	pub fn into_threaded(self) -> ApplicationHandleThreaded { self.into() }

	/// Spawns the given future, executing it on the GUI thread somewhere in the
	/// near future.
	pub fn spawn<F>(&self, future: F)
	where
		F: Future<Output = ()> + 'static,
	{
		// Data for the waker.
		let waker_data = Box::into_raw(Box::new(WakerData {
			handle: unsafe { self.clone() },
			future: Box::pin(future),
		}));

		// First poll
		Runtime::poll_future(waker_data);
	}

	/// Queues the given closure `func` to be executed on the GUI thread
	/// somewhere in the future, at least after the given delay. The closure
	/// will only execute when and if the runtime is still running.
	/// Returns whether or not the closure will be able to execute.
	pub fn dispatch_delayed<'a, F>(&self, func: F, delay: Duration) -> bool
	where
		F: FnOnce(&ApplicationHandle) + 'a,
	{
		let data_ptr = Box::into_raw(Box::new(ApplicationDispatchData {
			handle: unsafe { self.app_handle().clone() },
			func: Box::new(func),
		}));

		self.inner
			.dispatch_delayed(dispatch_handler, data_ptr as _, delay)
	}

	/// Will wait the given `duration` before returning execution back to the
	/// caller. This does not put the current thread in a sleeping state, it
	/// just waits.
	pub async fn sleep(&self, duration: Duration) {
		let (tx, rx) = oneshot::channel::<()>();

		self.dispatch_delayed(
			|_handle| {
				if let Err(_) = tx.send(()) {
					panic!("unable to send signal back to sleeping function");
				}
			},
			duration,
		);

		rx.await.unwrap();
	}
}

#[cfg(feature = "threadsafe")]
impl ApplicationHandleThreaded {
	/// Executes the given closure `func` on the GUI thread, and gives back the
	/// result when done. This only works when the runtime is still running.
	/// If the closure panicked, or the runtime is not running, this will return
	/// an error.
	///
	/// The function signature is practically the same as:
	/// ```ignore
	/// pub async fn delegate<'a,F,R>( &self, func: F ) -> Result<R, DelegateError> where
	/// 	F: FnOnce( ApplicationHandle ) -> R + Send + 'a,
	/// 	R: Send { /* ... */ }
	/// ```
	///
	/// Keep in mind that in multi-threaded environments, it is generally a good
	/// idea to put the output on the heap. The output value _will_ be copied.
	///
	/// # Example
	/// ```ignore
	/// let my_value: String = app.delegate(|handle| {
	/// 	"string".to_owned()
	/// }).unwrap();
	/// ```
	pub fn delegate<'a, F, R>(&self, func: F) -> ApplicationDelegateFuture<'a, R>
	where
		F: FnOnce(&ApplicationHandle) -> R + Send + 'a,
		R: Send,
	{
		ApplicationDelegateFuture::<'a, R>::new(unsafe { self.handle.clone() }, |h| func(h))
	}

	/// Executes the given `future` on the GUI thread, and gives back its output
	/// when done. This only works when the runtime is still running.
	/// If the future panicked during a poll, or the runtime is not running,
	/// this will return an error. See also `delegate`.
	///
	/// The function signature is practically the same as:
	/// ```ignore
	/// pub async fn delegate_future<'a,F,R>( &self, func: F ) -> Result<R, DelegateError> where
	/// 	F: Future<Output=R> + 'static,
	/// 	R: Send { /* ... */ }
	/// ```
	///
	/// # Example
	/// ```ignore
	/// let my_value: String = app.delegate_future(async {
	/// 	"string".to_owned()
	/// }).unwrap();
	/// ```
	pub fn delegate_future<F, R>(&self, future: F) -> DelegateFutureFuture<R>
	where
		F: Future<Output = R> + 'static,
		R: Send + 'static,
	{
		DelegateFutureFuture::new(unsafe { self.handle.clone() }, future)
	}

	/// Executes the given async closure `func` on the GUI thread, and gives
	/// back the result when done. This only works when the runtime is still
	/// running. If the closure panicked, or the runtime is not running, this
	/// will return an error.
	///
	/// Except, async closures are not yet supported in stable Rust.
	/// What we actually mean are closures of the form:
	/// ```ignore
	/// |handle| async move { /* ... */ }
	/// ```
	///
	/// The function signature is practically the same as:
	/// ```ignore
	/// pub async fn delegate_async<'a,C,F,R>( &self, func: C ) -> Result<R, DelegateError> where
	/// 	C: FnOnce( ApplicationHandle ) -> F + Send + 'a,
	/// 	F: Future<Output=R>,
	/// 	R: Send + 'static
	/// { /* ... */ }
	/// ```
	///
	/// # Example
	/// ```ignore
	/// let my_value: String = app.delegate_async(|handle| async move {
	/// 	"String".to_owned()
	/// }).unwrap();
	/// ```
	pub fn delegate_async<'a, C, F, R>(&self, func: C) -> DelegateFutureFuture<'a, R>
	where
		C: FnOnce(ApplicationHandle) -> F + Send + 'a,
		F: Future<Output = R>,
		R: Send + 'static,
	{
		let handle = unsafe { self.handle.clone() };
		DelegateFutureFuture::new(unsafe { self.handle.clone() }, async move {
			func(handle.into()).await
		})
	}

	/// Queues the given closure `func` to be executed on the GUI thread
	/// somewhere in the future. The closure will only execute when and if the
	/// runtime is still running. Returns whether or not the closure will be
	/// able to execute.
	pub fn dispatch<'a, F>(&self, func: F) -> bool
	where
		F: FnOnce(&ApplicationHandle) + Send + 'a,
	{
		let data_ptr = Box::into_raw(Box::new(ApplicationDispatchSendData {
			handle: unsafe { self.handle.clone() },
			func: Box::new(func),
		}));

		self.handle
			.inner
			.dispatch(dispatch_handler_send, data_ptr as _)
	}

	/// Queues the given closure `func` to be executed on the GUI thread
	/// somewhere in the future, at least after the given delay. The closure
	/// will only execute when and if the runtime is still running.
	/// Returns whether or not the closure will be able to execute.
	pub fn dispatch_delayed<'a, F>(&self, func: F, delay: Duration) -> bool
	where
		F: FnOnce(&ApplicationHandle) + Send + 'a,
	{
		let data_ptr = Box::into_raw(Box::new(ApplicationDispatchData {
			handle: unsafe { self.handle.clone() },
			func: Box::new(func),
		}));

		self.handle
			.inner
			.dispatch_delayed(dispatch_handler, data_ptr as _, delay)
	}

	/// Queues the given async closure `func` to be executed on the GUI thread
	/// somewhere in the future. The closure will only execute when and if the
	/// runtime is still running. However, there is no guarantee that the whole
	/// closure will execute. The runtime might exit when the given closure is
	/// at a point of waiting. Returns whether or not the closure will be able
	/// to execute its first part.
	pub fn dispatch_async<'a, C, F>(&self, func: C) -> bool
	where
		C: FnOnce(ApplicationHandle) -> F + Send + 'a,
		F: Future<Output = ()> + 'static,
	{
		self.dispatch(|handle| {
			let future = func(unsafe { handle.clone() });
			handle.spawn(future);
		})
	}

	/// Signals the runtime to exit.
	/// This will cause `Runtime::run` to stop and return the provided exit
	/// code.
	pub fn exit(&self, exit_code: i32) {
		// The thread-safe version of bw_Application_exit:
		self.handle.inner.exit_threadsafe(exit_code as _);
	}

	/// Constructs an `ApplicationThreaded` handle from a ffi handle
	pub(super) fn from_core_handle(inner: ApplicationImpl) -> Self {
		Self {
			handle: ApplicationHandle::new(inner),
		}
	}

	/// Executes the given future on the GUI thread somewhere in the near
	/// future.
	pub fn spawn<F>(&self, future: F)
	where
		F: Future<Output = ()> + 'static,
	{
		self.handle.spawn(future);
	}
}

#[cfg(feature = "threadsafe")]
impl From<ApplicationHandle> for ApplicationHandleThreaded {
	fn from(other: ApplicationHandle) -> Self {
		Self {
			handle: unsafe { other.clone() },
		}
	}
}

#[cfg(feature = "threadsafe")]
impl Deref for ApplicationHandleThreaded {
	type Target = ApplicationHandle;

	fn deref(&self) -> &Self::Target { &self.handle }
}

impl HasAppHandle for ApplicationHandle {
	fn app_handle(&self) -> &ApplicationHandle { &self }
}

fn dispatch_handler(_app: ApplicationImpl, _data: *mut ()) {
	let data_ptr = _data as *mut ApplicationDispatchData<'static>;
	let data = unsafe { Box::from_raw(data_ptr) };

	(data.func)(&data.handle);
}

#[cfg(feature = "threadsafe")]
fn dispatch_handler_send(_app: ApplicationImpl, _data: *mut ()) {
	let data_ptr = _data as *mut ApplicationDispatchSendData<'static>;
	let data = unsafe { Box::from_raw(data_ptr) };

	(data.func)(&data.handle);
}

/// The handler that is invoked when the runtime is deemed 'ready'.
fn ready_handler<H>(handle: ApplicationImpl, user_data: *mut ())
where
	H: FnOnce(ApplicationHandle),
{
	let app = ApplicationHandle::new(handle);
	let closure = unsafe { Box::from_raw(user_data as *mut H) };

	closure(app);
}

/// A handler that is invoked by wakers.
fn wakeup_handler(_app: ApplicationImpl, user_data: *mut ()) {
	let data = user_data as *mut WakerData;

	Runtime::poll_future(data);
}

unsafe fn waker_clone(data: *const ()) -> RawWaker { RawWaker::new(data, &WAKER_VTABLE) }

unsafe fn waker_wake(data: *const ()) {
	let data_ptr = data as *const WakerData;

	(*data_ptr)
		.handle
		.inner
		.dispatch(wakeup_handler, data_ptr as _);
}

unsafe fn waker_wake_by_ref(data: *const ()) { waker_wake(data); }

fn waker_drop(_data: *const ()) {}